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Preface

The following notes collect material from a series of lectures presented during a
course on “Statistical methods for data analysis” I gave for Ph.D. students in physics
at the University of Naples “Federico II” from 2009 to 2014. The aim of the course
was to elaborate on the main concepts and tools that allow to perform statistical
analysis of experimental data.

An introduction to probability theory and basic statistics is provided, which
serves as a refresher course for students who did not take a formal course on
statistics before starting their Ph.D.

Many of the statistical tools that have been covered have applications in high
energy physics (HEP), but their scope could well range outside the boundaries of
HEP.

A shorter version of the course was presented at CERN in November 2009
as lectures on statistical methods in LHC data analysis for the ATLAS and CMS
experiments. The chapter discussing upper limits was improved after lectures on the
subject I gave in Autrans, France, in May 2012 at the IN2P3 School of Statistics.
I was also invited to conduct a seminar on statistical methods in Gent University,
Belgium, in October 2014, which gave me an opportunity to review some of my
material and add new examples.

Napoli, Italy Luca Lista
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Chapter 1
Probability Theory

1.1 The Concept of Probability

Many processes in nature have uncertain outcomes. This means that their result
cannot be predicted before the process occurs. A random process is a process
that can be reproduced, to some extent, within some given boundary and initial
conditions, but whose outcome is uncertain. This situation may be due to insufficient
information about the process intrinsic dynamics which prevents to predict its
outcome, or lack of sufficient accuracy in reproducing the initial conditions in
order to ensure its exact reproducibility. Some processes like quantum mechanics
phenomena have intrinsic randomness. This will lead to possibly different outcomes
if the experiment is repeated several times, even if each time the initial conditions are
exactly reproduced, within the possibility of control of the experimenter. Probability
is a measurement of how favored one of the possible outcomes of such a random
process is compared with any of the other possible outcomes.

There are two main different approaches to the concept of probability which
result in two different meanings of probability. These are referred to as frequentist
and Bayesian probabilities.

• Frequentist probability is defined as the fraction of the number of occurrences
of an event of interest over the total number of possible events in a repeatable
experiment, in the limit of very large number of experiments. This concept can
only be applied to processes that can be repeated over a reasonably long range
of time. It is meaningless to apply the frequentist concept of probability to an
unknown event, like the possible values of an unknown parameter. For instance,
the probability of a possible score in a sport game, or the probability that the mass
of an unknown particle is larger than 200 GeV, are meaningless in the frequentist
approach.

• Bayesian probability measures someone’s degree of belief that a statement
is true (this may also refer to future events). The quantitative definition of
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2 1 Probability Theory

Bayesian probability makes use of an extension of the Bayes theorem, and
will be discussed in Sect. 3.1. Bayesian probability can be applied wherever
the frequentist probability is meaningful, as well as on a wider variety of
cases in which one wants to determine a probability of unknown events or of
unknown quantities. For instance, after some direct and/or indirect experimental
measurements, the probability that an unknown particle’s mass is larger than
200 GeV could be meaningful in the Bayesian sense. Other examples of valid
Bayesian probabilities that have no corresponding meaning under the frequentist
approach are the outcome of a future elections, as well as statements about past
but unknown events, like about uncertain features of prehistoric extinct species,
and so on.

This chapter will start from classical probability theory, as formulated since
the eighteenth century, and will mainly discuss frequentist probability. Bayesian
probability will be the subject of Chap. 3.

1.2 Classical Probability

In 1814, Pierre-Simon Laplace wrote [1]:

The theory of chance consists in reducing all the events of the same kind to a certain number
of cases equally possible, that is to say, to such as we may be equally undecided about in
regard to their existence, and in determining the number of cases favorable to the event
whose probability is sought. The ratio of this number to that of all the cases possible is the
measure of this probability, which is thus simply a fraction whose numerator is the number
of favorable cases and whose denominator is the number of all the cases possible.

This formulation is the basis of the definition of classical probability. We
intend as random variable the outcome of a repeatable experiment whose result is
uncertain. An event1 consists of the occurrence of a certain condition on the random
variable resulting from an experiment, e.g.: a coin toss gave a head or a dice roll gave
an even value. The probability of an event defined by the random variable having
one of a number of possible favorable cases can be written, according to Laplace, as:

Probability D Number of favorable cases

Number of possible cases
: (1.1)

This approach can be used in practice only for relatively simple problems, since
it assumes that all possible cases under consideration are equally probable, which
may not always be the case in complex examples. Examples of cases where the
classical probability can be applied are coin tossing, where the two faces of a coin

1Note that in physics often event is intended as an elementary event. So, the use of the term event
in statistics may sometimes lead to confusion.



1.2 Classical Probability 3

Table 1.1 Possible
combinations of two dice roll
(center column) leading a
given sum (left column) and
the corresponding probability
(right column)

Sum Favorable cases Probability

2 .1; 1/ 1/36

3 .1; 2/, .2; 1/ 1/18

4 .1; 3/, .2; 2/, .3; 1/ 1/12

5 .1; 4/, .2; 3/, .3; 2/, .4; 1/ 1/9

6 .1; 5/, .2; 4/, .3; 3/, .4; 2/, .5; 1/ 5/36

7 .1; 6/, .2; 5/, .3; 4/, .4; 3/, .5; 2/, .6; 1/ 1/6

8 .2; 6/, .3; 5/, .4; 4/, .5; 3/, .6; 2/ 5/36

9 .3; 6/, .4; 5/, .5; 4/, .6; 3/ 1/9

10 .4; 6/, .5; 5/, .6; 4/ 1/12

11 .5; 6/, .6; 5/ 1/18

12 .6; 6/ 1/36

are assumed to have equal probability, equal to 1=2 each, or dice roll, where each of
the six dice faces2 has equal probability equal to 1=6, and so on.

Starting from simple cases, like coins or dices, more complex models can be
built using combinatorial analysis, in which, in the simplest cases, one may proceed
by enumeration of all the finite number of possible cases, and again the probability
of an event is given by counting the number of favorable cases and dividing it by
the total number of possible cases of the combinatorial problem. An easy case of
combinatorial analysis is given by the roll of two dices, taking the sum of the two
outcomes as final result. The possible number of outcomes is given by the 6�6 D 36

different combinations that may lead to a sum ranging from 2 to 12. The possible
combinations are enumerated in Table 1.1, and the corresponding probabilities,
computed as the number of favorable cases divided by 36, are shown in Fig. 1.1.

Several examples can be treated in this way, decomposing the problem in all the
possible elementary outcomes, and identifying an event as the occurrence of one of
the elementary outcomes from a specific set of possible outcomes. For instance, the
event “sum of dices = 4” will correspond to the set of possible outcomes f.1; 3/,
.2; 2/, .3; 1/g. Other events (e.g.: “sum is an odd number”, or “sum is greater
than 5”) may be associated to different sets of possible combinations. In general,
formulating the problem in terms of sets allows to replace logical “and”, “or” and
“not” in the sentence defining the outcome condition by the intersection, union and
complement of the corresponding sets of elementary outcomes.

It is possible to build more complex models, but as soon as the problem increases
in complexity, the difficulty to manage the combinatorial analysis often rapidly
grows up and may easily become hard to manage. In many realistic cases, like in
the case of a particle detector where effects like efficiency, resolution, etc. must be
taken into account, it may be hard to determine a number of equally probable cases,
and a different approach should be followed. It can also be shown that classical

2Or even different from 6, like in many role-playing games that use dices of non-cubic solid shapes.
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Fig. 1.1 Probability of different outcomes of the sum of two dices

probability is easy to define only for discrete cases, and the generalization to the
continuum case is not unambiguously defined, as will be seen in Sect. 1.3.1.

1.3 Issues with the Generalization to the Continuum

The generalization of classical probability to continuous random variables requires
to extend the definition of probability introduced in the previous Sect. 1.2. In
particular, the concept of equiprobability can’t be generalized to the continuum
case in an unambiguous way. Imagine we have a continuous variable x for which
we want to define an extension of the equiprobability concept we applied to the
six possible outcomes of a dice. We can think of partitioning the validity range of
x (say Œx1; x2
) into intervals I1; � � � ; IN all having the same size, for an arbitrarily
large number N, i.e. each measuring .x2 � x1/=N. We can say that the probability
distribution of the variable x is uniform if the probability that the value of x resulting
from a random extraction falls into any of the N intervals is the same, i.e. it is
equal to 1=N. This definition of uniform probability of x in the interval Œx1; x2

clearly changes under reparametrization, i.e. if we transform the variable x into
y D Y.x/ (assuming for simplicity that Y is a monotonous increasing function of x),
and the interval Œx1; x2
 into Œy1; y2
 D ŒY.x1/;Y.x2/
. In this case, the transformed
intervals J1; � � � ; JN D Y.I1/; � � � ;Y.IN/ will not have all the same size, unless the
transformation Y is linear. So, if x has a uniform distribution, y D Y.x/ in general
does not have a uniform distribution.
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Fig. 1.2 Illustration of Betrand’s paradox: three different choices of random extraction of a chord
in the circle lead apparently to probabilities that the cord is longer than the inscribed triangle’s side
of 1

2
(left), 1

3
(center) and 1

4
(right) respectively

1.3.1 The Bertrand’s Paradox

The arbitrariness in the definition of uniform random extraction becomes evident
in a famous paradox, called the Bertrand’s paradox3 that can be formulated as
follows:

• Consider an equilateral triangle inscribed in a circle. Extract uniformly one of
the possible chords of the circle. What is the probability that the length of the
extracted chord is larger than the side of the inscribed triangle?

The apparent paradox arises because the uniform extraction of a chord on a circle
is not a well-defined process. Below we give three possible example of random
extractions that give apparently different probabilities.

1. Let’s take the circle’s diameter passing by one of the vertices of the triangle
and let’s extract uniformly a point on this diameter. Then, let’s takes the chord
perpendicular to the diameter passing by the extracted point. Evidently from
Fig. 1.2 (left plot) one half of the extracted chords will have a length larger than
the triangle’s side, since the basis of the triangle cuts the vertical diameter at half
the radius size. Repeating the example for all possible diameters of the circle, that
we assume to extract uniformly with respect to the azimuthal angle, we can spans
in this way all possible chords of the circle. Hence, the probability in question
would be P D 1

2
.

2. Let’s take, instead, one of the chords starting from one of the vertices of the
triangle (Fig. 1.2, center plot) extracting uniformly an angle with respect to the
tangent to the circle passing by that vertex. The chord is longer than the triangle’s
side when it intersects the basis of the triangle and shorter otherwise. This occurs
in one thirds of the cases, since the angles of the equilateral triangle measure

3This apparent paradox is due to the French mathematician Joseph Louis François Bertrand (1822–
1900).
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�=3, and the chords span an angle of � . Repeating for any possible point on the
circumference of the circle, one would derive that P D 1

3
, which is different from

P D 1
2

as we derived in the first case.
3. Let’s extract uniformly a point in the circle and let’s construct the chord passing

by that point perpendicular to the radius that passes by the same point (Fig. 1.2,
right plot). We can derive in this way that P D 1

4
, since the chords starting from

a point contained inside (outside) the circle inscribed in the triangle would have
a length longer (shorter) than the triangle’s side, and the ratio of the areas of the
circle inscribed in the triangle to the area of the circle that inscribes the triangle
is equal to 1

4
.

The paradox is clearly only apparent, because the process of uniform random
extraction of a chord in a circle is not univocally defined.

1.4 Axiomatic Probability Definition

An axiomatic definition of probability as a theory of measurement that is valid either
in the discrete and the continuous case is due to Kolmogorov [2]. Let’s consider a
measure space, .�;F � 2�;P/, where P is a function that maps elements of F, a
subset of the power set 2� of � (i.e.: F contains subsets of �), to real numbers. In
literature � is called sample space and F is called event space. P is a probability
measure if the following properties are satisfied:

1. P.E/ � 0, 8E 2 F,
2. P.�/ D 1,
3. 8.E1; � � � ;En/ 2 Fn W Ei [ Ej D 0, P.[n

ID1Ei/ D Pn
iD1 P.Ei/.

This definition allows to generalize the classical probability to the case of continu-
ous variables, as we will see in the following sections. Bayesian probability, defined
in Chap. 3, also obeys Kolmogorov’s axioms.

1.5 Probability Distributions

Let’s assume that a random variable x has possible values (outcomes) x1; � � � ; xN

which occur each with a probability P.fxi/g/ D P.xi/, i D 1; � � � N. We define
probability distribution the function that associates to a possible value xi of the
random variable x its probability P.xi/. The probability of an event E corresponding
to a set of distinct possible elementary outcomes fxE1 ; � � � ; xEK g is, according to the
third Kolmogorov’s axiom:

P.E/ D
KX

jD1
P.xEj/ : (1.2)
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From the second Kolmogorov’s axiom, it is also clear that the probability of the
event � corresponding to the set of all possible outcomes, x1; � � � ; xN must be one.
Equivalently, the sum of the probabilities of all possible outcomes is equal to one:

nX

iD1
P.xi/ D 1 : (1.3)

This property of probability distributions is called normalization.

1.6 Conditional Probability and Independent Events

Given an event A and an event B, the conditional probability, P.AjB/, is defined
as the probability of A given the condition that the event B has occurred, and is
given by:

P.AjB/ D P.A \ B/

P.B/
: (1.4)

The conditional probability can be visualized in Fig. 1.3. While the probability of A,
P.A/, corresponds to the area of the set A, relative to the area of the whole sample
space �, which is equal to one, the conditional probability, P.AjB/, corresponds to
the area of the intersection of A and B, relative to the area of the set B.

An event A is said to be independent on event B if the conditional probability of
A, given B, is equal to the probability of A, i.e.: the occurrence of B does not change
the probability of A:

P.AjB/ D P.A/ : (1.5)

Two events are independent if, and only if, the probability of their simultaneous
occurrence is equal to the product of their probabilities, i.e.:

P.“A and B”/ D P.A \ B/ D P.A/P.B/ : (1.6)

Fig. 1.3 If two events, A and
B, are represented as sets, the
conditional probability
P.AjB/ is equal to the area of
the intersection, A \ B,
divided by the area of B
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Given the symmetry of Eq. (1.6), if A is independent on B, then B is also
independent on A.

Example 1.1 – Combination of Detector Efficiencies

Consider an experimental apparatus made of two detectors A and B and a
particle that traverses both. If the two detectors give independent signals,
the probability "AB that a particle gives a signal in both detector is given by
the product of the probability "A that the detector A gives a signal times the
probability "B that the detector B gives a signal:

"AB D "A"B : (1.7)

"A and "B are also called efficiencies of the detectors A and B respectively.
This result clearly does not hold if there are causes of simultaneous

inefficiency of both detectors, e.g.: fraction of times where the electronics
systems for both A and B are simultaneously switched off for short periods,
or geometrical overlap of inactive regions.

1.7 Law of Total Probability

Let’s consider a number of sets (events) fE1; � � � ;Eng, subsets of another set E0
included in the sample space �, such that the set of the Ei is a partition of E0, i.e.:
Ei \ Ej D 0 for all i and j, and:

n[

iD1
Ei D E0 : (1.8)

This case is visualized in Fig. 1.4. It is easy to prove that the probability correspond-
ing to E0 is equal to the sum of the probabilities of Ei (law of total probability):

P.E0/ D
nX

iD1
P.Ei/ : (1.9)

Given a partition fA1; � � � ;Ang of the sample space� of disjoint sets (Ai \Aj D 0

and
P

i P.Ai/ D 1), we can build the sets:

Ei D E0 \ Ai ; (1.10)
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Fig. 1.4 Visual example of
partition of an event set
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Fig. 1.5 Visualization of the
law of total probability
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as visualized in Fig. 1.5. This corresponds, from Eq. (1.4), to a probability:

P.Ei/ D P.E0 \ Ai/ D P.E0jAi/P.Ai/ : (1.11)

In this case, we can rewrite Eq. (1.9) as:

P.E0/ D
nX

iD1
P.E0jAi/P.Ai/ : (1.12)

This decomposition, which can be interpreted as weighted average (see
Sect. 5.11.1) of the probabilities P.Ai/ with weights wi D P.E0jAi/, will be later
used for Bayesian probability, discussed in Chap. 3.

1.8 Average, Variance and Covariance

In this section a number of useful quantities related to the probability distribution of
a random variable are defined. Let’s consider a random variable x which can assume
the N possible values (outcomes) x1; � � � ; xN .
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The average value or expected value of a random variable x with probability
distribution P is defined as:

hxi D
NX

iD1
xiP.xi/ : (1.13)

Sometimes the notation EŒx
 or Nx is also used in literature to indicate the average
value.

The variance of a random variable x is defined as:

VŒx
 D
NX

iD1
.xi � hxi/2P.xi/ ; (1.14)

and the standard deviation is the square root of the variance:

�x D p
VŒx
 D

v
u
u
t

NX

iD1
.xi � hxi/2P.xi/ : (1.15)

Sometimes the standard deviation is confused, in some physics literature, with the
root mean square, abbreviated as r.m.s., which instead should be more properly
defined as:

xrms D
v
u
u
t 1

N

NX

iD1
x2i P.xi/ D

p
hx2i : (1.16)

The variance can also be written as:

VŒx
 D ˝
.x � hxi/2˛ ; (1.17)

and it’s easy to demonstrate that it can be equivalently written as:

VŒx
 D ˝
x2
˛ � hxi2 : (1.18)

It is also easy to demonstrate that, if we have two random variables x and y, the
averages can be added linearly, i.e.:

hx C yi D hxi C hyi ; (1.19)
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Given a constant a, we have:

haxi D a hxi (1.20)

and

VŒax
 D a2VŒx
 : (1.21)

Given two variables x and y, their covariance is defined as:

cov.x; y/ D hxyi � hxi hyi ; (1.22)

and the correlation coefficient of x and y is defined as:

�xy D cov.x; y/

�x�y
: (1.23)

It can be demonstrated that:

VŒx C y
 D VŒx
C VŒy
C 2 cov.x; y/ : (1.24)

So, variances of uncorrelated variables can be added linearly.
Given n random variables, x1; � � � ; xn, the symmetric matrix Cij D cov.xi; yj/

is called covariance matrix. The diagonal terms are always positive or null, and
correspond to the variances of the n variables.

Another quantity that is sometimes important is the skewness of a distribution
defined as:

1 D
*�

x � hxi
�x

�3
+

D 

�3
; (1.25)

where the quantity:

 D ˝
x3
˛ � 3 hxi ˝x2˛C 2 hxi3 (1.26)

is called unnormalized swekness. Symmetric distribution have skewness equal to
zero.

The kurtosis, finally, is defined as:

ˇ2 D
*�

x � hxi
�x

�4
+

: (1.27)
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Usually the kurtosis coefficient, 2 is defined as:

2 D ˇ2 � 3 (1.28)

in order to have 2 D 0 for a normal distribution. 2 is also defined as excess.

1.9 Variables Transformations

Given a random variable x, let’s consider the variable y transformed via the function
y D Y.x/. If x can only assume the values fx1; � � � ; xNg, then y can only assume one
of the values fy1; � � � ; yMg D fY.x1/; � � � ;Y.yN/g. Note that N is equal to M only
if all the values Y.xi/ are different from each other. The probability of any value yj

is given by the sum of the probabilities of all values xi that are transformed into yj

by Y:

P.yj/ D
X

iWY.xi/Dyj

P.xi/ : (1.29)

Note that there could also be a single possible value of the index i for which Y.xi/ D
yi. In this case, we will have just P.yj/ D P.xi/.

The generalization to more variables is straightforward: assume that we have
two random variables x and y, and we have a variable z defined as z D Z.x; y/; if
fz1; � � � ; zMg is the set of all possible values of z, given all the possible values xi and
yj, the probability of each possible value of z, zk, will be given by:

P.zk/ D
X

i;jWZ.xi;yj/Dzk

P.xi; yj/ : (1.30)

This expression is consistent with the example of the sum of two dices considered
in Sect. 1.2:

Example 1.2 – Application to Sum of Dice Rolls

Let’s compute the probabilities that the sum of two dice rolls is even or odd.
We can consider all cases in Table 1.1, and add the probabilities for all even
and odd values. Even values and their probabilities are: 2 W 1=36, 4 W1 =12,
6 W5=36, 8 W5=36, 10 W1=12, 12 W1=36. So, the probability of an even result is:
.1C 3C 5C 5C 3C 1/=36 D18 =36 D1 =2. This is consistent with the fact
that each dice has probability 1=2 of an even or odd result, and an even result as
the sum of two dices can occur either as sum of two even results or as sum of
two odd results, each case with probability 1=2 �1=2 D1=4. So, the probability
of either of the two cases is 1=4 C1=4 D1=2.
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1.10 The Bernoulli Process

Let’s consider a basket that contains a number n of balls that have two possible
colors, say red and white. We know the number r of red balls in the basket, hence
the number of white balls is n � r. The probability to randomly extract a red ball in
that set of n balls is p D r=n, according to Eq. (1.1) (Fig. 1.6).

A variable x equal to the number of extracted red balls is called Bernoulli
variable, and can assume only the values of 0 or 1. The probability distribution
of x is just given by P.1/ D p, P.0/ D 1 � p. The average of a Bernoulli variable is
easy to compute:

hxi D P.0/ � 0C P.1/ � 1 D P.1/ D p : (1.31)

Similarly, the average of x2 is:

˝
x2
˛ D P.0/ � 02 C P.1/ � 12 D P.1/ D p ; (1.32)

hence the variance of x, using Eq. (1.18), is:

VŒx
 D ˝
x2
˛ � hxi2 D p.1 � p/ : (1.33)

Fig. 1.6 A set of n D 10 balls, of which r D 3 are red determines a Bernoulli process. The
probability to randomly extract a red ball in the set shown in this figure is p D r=n D 3=10 D 30%
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1.11 The Binomial Process

A binomial process consists of performing a given number N of independent
Bernoulli extractions all having the same probability p. This could be implemented
for instance by randomly extracting a (red or white) ball in a set of balls from a
basket containing a fraction p of red balls; after each extraction, the extracted ball is
placed again in the basket and the extraction is repeated N times. Figure 1.7 shows
the possible outcomes of a binomial process as subsequent random extractions of a
single ball.

The number n of red balls (positive outcomes) over the total N extraction is
called binomial variable. Its probability distribution can be simply determined by
looking at Fig. 1.7, considering how many red and white extraction have occurred
in each extraction, assigning each extraction a probability p or 1 � p respectively,
and considering the number of possible paths leading to a given combination of
red/white extractions.

The latter term takes the name of binomial coefficient and can be demonstrated
by recursion to be equal to4:

�
n
N

�

D nŠ

NŠ.N � n/Š
: (1.34)

The probability distribution of the binomial variable n for a given N and p can be
obtained considering that the n extractions are independent, hence the corresponding
probability terms (p for a red extraction, 1 � p for a white extraction) can be
multiplied, according to Eq. (1.6). Multiplying finally this product by the binomial
coefficient from Eq. (1.34) to take into account the possible extraction paths leading

4The coefficients present in the binomial distribution are the same that appear in the expansion
of the binomial power .a C b/n . A simple iterative way to compute those coefficients is known
in literature as the Pascal’s triangle. Different countries quote this triangle according to different
authors, e.g.: the Tartaglia’s triangle in Italy, Yang Hui’s triangle in China, etc. In particular, the
following publications of the triangle are present in literature:

• India: published in the tenth century, referring to the work of Pingala, dating back to fifth–
second century BC.

• Persia: Al-Karaju (953–1029) and Omar Jayyám (1048–1131), often referred to as Kayyám
triangle in modern Iran

• China: Yang Hui (1238–1298), referred to as Yang Hui’s triangle by Chinese; see Fig. 1.8
• Germany: Petrus Apianus (1495–1552)
• Italy: Nicolò Fontana Tartaglia (1545), referred to as Tartaglia’s triangle in Italy
• France: Blaise Pascal (1655), refereed to as Pascal’s triangle.
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Fig. 1.7 Building a binomial process as subsequent random extractions of a single red or white
ball (Bernoulli process). The “tree” in figure displays all the possible combinations at each
extraction step. Each of the “branching” has a corresponding probability equal to p or 1 � p for
red and white ball respectively. The number of paths corresponding to each possible combination
is shown in parentheses, and is equal to a binomial coefficient

to the same outcome, the probability to obtain n red and N � n white extractions can
be written as:

P.nI N/ D nŠ

NŠ.N � n/Š
pN.1 � p/N�n : (1.35)

The Binomial distribution is shown in Fig. 1.9 for N D 15 and for p D 0:2, 0.5 and
0.8.

Since the binomial variable n is the sum of N independent Bernoulli variables
with probability p, the average and variance of n can be computed as N times the
average and variance of a Bernoulli variable (Eqs. (1.31) and (1.33)):

hni D Np ; (1.36)

VŒn
 D Np.1 � p/ : (1.37)

Those formulae can also be obtained directly from Eq. (1.35).

1.11.1 Binomial Distribution and Efficiency Estimate

The efficiency " of a device is defined as the probability that the device gives a
positive signal upon the occurrence of a process of interest. Particle detectors are
examples of such devices. The distribution of the number of positive signals n upon
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Fig. 1.8 The Yang Hui triangle published in 1303 by Zhu Shijie (1260–1320)

the occurrence of N processes of interest is given by a binomial distribution with
probability p D ". Given a measurement On (i.e.: the result of a real experiment,
or a particular random extraction of n), a typical problem is the estimate of the
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Fig. 1.9 Binomial distribution for N D 15 and for p D 0:2, 0.5 and 0.8

efficiency " of the device. The problem of parameter estimates will be discussed
more in general in Chaps. 3 and 5 for what concerns the Bayesian and frequentist
approaches, respectively.

For the moment, a pragmatic way to estimate the efficiency can be considered by
performing a large number N of sampling of our process of interest, and by counting
the number of times On the device gives a positive signal (i.e.: it has been efficient).
This leads to the estimate of the true efficiency " given by:

O" D On
N
: (1.38)

One may argue that if N is sufficiently large, O" will be very close to true efficiency ".
This will be more formally discussed as a consequence of the law of large numbers,
which will be introduced in Sect. 1.12. The variance of n, VŒn
, from Eq. (1.37), is:

�" D
r

Var
h n

N

i
D
r
".1� "/

N
: (1.39)

By simply replacing "with O" one would have the following approximated expression
for the standard deviation (interpreted as error or uncertainty) of O":

ı" D
r O".1 � O"/

N
: (1.40)
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The above formula is just an approximation, and in particular it leads to an error
ı" D 0 in the cases where O" D 0 or O" D 1, i.e. when On D 0 or On D N respectively.

Chapter 5 will introduce more rigorous definitions of error estimates and will
discuss how to evaluate errors on a proper statistical basis. Later on, in Sect. 6.2, we
will see how to overcome the problems arising with Eq. (1.40).

1.12 The Law of Large Numbers

When an experiment that produces a random outcome x is repeated N times, the
average of the outcomes, Nx D .x1 C � � � C xN/=N, is a random variable whose
probability distribution has a much smaller fluctuation than each of the original
single experiment outcome, xi. This can be demonstrated, using classical probability
and combinatorial analysis, in the simplest cases, and one can show that most of
the possible outcomes of Nx have very small probabilities, except the ones very
close to the expected average hxi (Eq. (1.13)). This is already partially evident in
Fig. 1.1, where the distribution of the sum of two dice rolls is peaked around 7
(D 2 � 3:5 D 2 � hxi) even for N D 2. This convergence of the probability
distribution of Nx to the single value hxi, for N ! 1, is called law of large numbers,
and can be illustrated in a simulated experiment consisting of repeatedly rolling a
dice, whose result ranges from 1 to 6 as usual, and plotting the average Nx obtained
after the first N extractions, as a function of N. This is shown in Fig. 1.10, where the
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Fig. 1.10 An illustration of the law of large numbers using a simulation of die rolls. The average
of the first N out of 1000 random extraction is reported as a function of N. The 1000 extractions
have been repeated twice (red and blue lines)
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plot of Nx as a function of N “converges” to:

hxi D 1C 2C 3C 4C 5C 6

6
D 3:5 : (1.41)

Increasing the number of trials, the probability distribution of the possible average
values acquires a narrower shape, and the interval of the values that correspond
to a large fraction of the total probability (we could chose—say—90 or 95 %) gets
smaller and smaller as the number of trials N increases. If we would ideally increase
to infinity the total number of trials N, the average value Nx would no longer be a
random variable, but would take a single possible value equal to hxi D 3:5.

The law of large numbers has many empirical verifications for the vast majority
of random experiments. This broad generality of the law of large numbers even in
realistic and more complex cases than the simple ones that can be described by
simplified classical models gives raise to the frequentist definition of the probability
P.E/ of an event E according to the following limit:

P.E/ D p if 8" lim
N!1 P

�ˇ
ˇ
ˇ
ˇ
N.E/

N
� p

ˇ
ˇ
ˇ
ˇ < "

�

: (1.42)

The limit is intended, in this case, as convergence in probability, that means that, by
the law of large numbers, the limit only rigorously holds in the non-realizable case of
an infinite number of experiments. Rigorously speaking, the definition of frequentist
probability in Eq. (1.42) is defined itself in terms of another probability, which
could introduce some conceptual problems. F. James et al. report the following
sentence [3]: “this definition is not very appealing to a mathematician, since it
is based on experimentation, and, in fact, implies unrealizable experiments (N !
1)”.

In practice, anyway, we know that experiments are reproducible on a finite range
of time (on this planet, for instance, until the sun and the solar system will continue
to exist), so, for the practical purposes of physics application, we can consider
the law of large numbers and the frequentist definition of probability, beyond their
exact mathematical meaning, as pragmatic definitions that describe to a very good
approximation level the concrete situations of the vast majority of the cases we are
interested in experimental physics.
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Chapter 2
Probability Distribution Functions

The problem introduced with Bertrand’s paradox, seen in Sect. 1.3.1, occurs because
the decomposition of the range of possible values of a random variable x into
equally probable elementary cases is not possible without ambiguity. The ambiguity
arises because of the continuum nature of the problem. We considered in Sect. 1.3
a continuum random variable x whose outcome may take any possible value in
a continuum interval Œx1; x2
, and we saw that if x is uniformly distributed in
Œx1; x2
, a transformed variable y D Y.x/ is not in general uniformly distributed
in Œy1; y2
 D ŒY.x1/;Y.x2/
 (Y is taken as a monotonic function of x). This makes
the choice of a continuum variable on which to find equally probable intervals of
the same size an arbitrary choice.

2.1 Definition of Probability Distribution Function

The concept of probability distribution seen in Sect. 1.5 can be generalized to the
continuum case introducing the probability distribution function defined as follows.
Let’s consider a sample space, fEx D .x1; � � � ; xn/ 2 � � Rng. Each random
extraction (an experiment, in the cases of interest to a physicist) will lead to an
outcome (measurement) of one point Ex in the sample space �. We can associate to
any point Ex a probability density f .Ex/ D f .x1; � � � ; xn/ which is a real value greater
or equal to zero. The probability of an event A, where A � �, i.e.: the probability
that Ex 2 A, is given by:

P.A/ D
Z

A
f .x1; � � � ; xn/ dnx : (2.1)

The function f is called probability distribution function (PDF). The function f .Ex/
can be interpreted as differential probability, i.e.: the probability corresponding to an
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infinitesimal hypercube dx1 � � � dxn, divided by the infinitesimal hypercube volume:

dnP

dx1 � � � dxn
D f .x1; � � � ; xn/ : (2.2)

The normalization condition for discrete probability distributions (Eq. (1.3)) can be
generalized to continuous probability distribution functions as follows:

Z

�

f .x1; � � � ; xn/ dnx D 1 : (2.3)

In one dimension, one can write:

Z C1

�1
f .x/ dx D 1 : (2.4)

Note that the probability of each single point is rigorously zero if f is a real function,
i.e.: P.fx0g/ D 0 for any xo, since the set fx0g has null measure. The treatment
of discrete variables in one dimension can be done using the same formalism of
PDFs, extending the definition of PDF to Dirac’s delta functions (ı.x � x0/, with
R C1

�1 ı.x�x0/ dx D 1). Dirac’s delta functions can be linearly combined with proper
weights equal to the probabilities of the discrete values: the PDF corresponding to
the case of a discrete random variable x that can take only the values x1; � � � ; xN with
probabilities P1; � � � ;PN respectively can be written as:

f .x/ D
NX

iD1
Piı.x � xi/ : (2.5)

The normalization condition in this case can be written as:

Z C1

�1
f .x/ dx D

NX

iD1
Pi

Z C1

�1
ı.x � xi/ dx D

NX

iD1
Pi D 1 ; (2.6)

which gives again Eq. (1.3). Discrete and continuous values can be combined
introducing linear combinations of continuous PDFs and Dirac’s delta functions.

2.2 Average and Variance in the Continuous Case

The definitions of average and variance introduced in Sect. 1.8 are generalized for
continuous variables as follows:

hxi D
Z

x f .x/ dx ; (2.7)



2.3 Cumulative Distribution 23

VŒx
 D
Z

.x � hxi/2f .x/ dx D ˝
x2
˛ � hxi2 : (2.8)

Integrals should be extended over Œ�1;C1
, or the whole validity range of the
variable x. The standard deviation is defined as:

�x D p
VŒx
 : (2.9)

Other interesting parameters of a continuous PDF are the median, which is the
value m such that:

P.x � m/ D P.x > m/ D 1

2
; (2.10)

or equivalently:

Z m

�1
f .x/ dx D

Z C1

m
f .x/ dx D 1

2
; (2.11)

and the mode, which is the value M that corresponds to the maximum of the
probability density:

f .M/ D max
x

f .x/ : (2.12)

2.3 Cumulative Distribution

Given a PDF f .x/, its cumulative distribution is defined as:

F.x/ D
Z x

�1
f .x0/ dx0 : (2.13)

The cumulative distribution, F.x/, is a monotonous increasing function of x, and
from the normalization of f .x/ (Eq. (2.4)), its value ranges from 0 to 1. In particular:

lim
x!�1 F.x/ D 0 ; (2.14)

lim
x!C1 F.x/ D 1 : (2.15)

If the variable x follows the PDF f .x/, the PDF of the transformed variable y D
F.x/ is uniform between 0 and 1, as can be demonstrated in the following:

dP

dy
D dP

dx

dx

dy
D f .x/

dx

dF.x/
D f .x/

f .x/
D 1 : (2.16)
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This property will be very useful to generate with computers pseudorandom
numbers with the desired PDF, as we will see in Chap. 4.

2.4 Continuous Variables Transformation

The transformation of probability distributions upon transformation of variables,
presented in Sect. 1.9, can be generalized in the continuous case. If we have a
variable transformation y D Y.x/, the PDF of the transformed variable y can be
generalized from Eq. (1.29) as:

f .z/ D
Z

ı.y � Y.x//f .x/ dx : (2.17)

Similarly, if we have a variable transformation z D Z.x; y/, the PDF of the
transformed variable z can be generalized from Eq. (1.30) as:

f .z/ D
Z

ı.z � Z.x; y//f .x; y/ dx dy : (2.18)

In the case of transformations into more than one variable, the generalization is
straightforward. If we have for instance: x0 D X0.x; y/, y0 D Y 0.x; y/, the transformed
two-dimensional PDF can be written as:

f 0.x0; y0/ D
Z

ı.x0 � X0.x; y//ı.y0 � Y 0.x; y//f .x; y/ dx dy : (2.19)

If the transformation is invertible, the PDF transforms according to the determinant
of the Jacobean of the transformation. This factor appears in fact in the transforma-
tion of the n-dimensional volume element dnx D dx1 � � � dxn:

dnP

dnx
D dnP0

dnx0 det

ˇ
ˇ
ˇ
ˇ
@x0

i

@xj

ˇ
ˇ
ˇ
ˇ : (2.20)

2.5 Uniform Distribution

A variable x is uniformly distributed in the interval Œa; bŒ if the PDF is constant in
the range x 2 Œa; bŒ. This condition is identical to the condition that was discussed
in Sect. 1.3.1. Using the normalization condition, a uniform PDF can be written as:

u.x/ D
( 1

b � a
if a � x < b

0 if x < a or x � b
: (2.21)
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Fig. 2.1 Uniform distributions with different extreme values

Examples of uniform distributions are shown in Fig. 2.1 for different extreme values
a and b.

The average of a variable x which is uniformly distributed is:

hxi D a C b

2
; (2.22)

and the standard deviation of x is:

� D b � ap
12

: (2.23)

Example 2.3 – Strip Detectors

A detector instrumented with strips of a given pitch l receives particles uni-
formly distributed along each strip. The standard deviation of the distribution
of the position of the particles’ impact point on the strip along the direction
transverse to the strips is given by l=

p
12, according to Eq. (2.23).
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2.6 Gaussian Distribution

A variable x follows a Gaussian or normal distribution if it obeys the following PDF,
with � and � being fixed parameters:

g.xI�; �/ D 1p
2��2

exp

�

� .x � �/2
2�2

�

: (2.24)

The average value and standard deviation of the variable x are � and � respectively.
Examples of Gaussian distributions are shown in Fig. 2.2 for different values of �
and � . A random variable obeying a normal distribution is called normal random
variable.

If � D 0 and � D 1, a normal variable is called standard normal following the
standard normal distribution �.x/:

�.x/ D 1p
2�

e� x2
2 (2.25)
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Fig. 2.2 Gaussian distributions with different values of average and standard deviation parameters
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and its cumulative distribution is:

ˆ.x/ D 1p
2�

Z x

�1
e� x02

2 dx0 D 1

2

�

erf

�
xp
2

�

C 1

�

: (2.26)

The probability for a Gaussian distribution corresponding to the interval Œ� �
Z�; �C Z�
, which is symmetric around �, is frequently used in many application.
It can be computed as:

P.Z�/ D 1p
2�

Z Z

�Z
e� x2

2 dx D ˆ.Z/ �ˆ.�Z/ D erf

�
Zp
2

�

: (2.27)

The most frequently used values are the ones corresponding to 1� , 2� and 3� , and
correspond to probabilities of 68.72, 95.45 and 99.73 % respectively.

The importance of the Gaussian distribution is due to the central limit theorem
(see Sect. 2.11), which allows to approximate to Gaussian distributions may realistic
cases resulting from the superposition of more random effects each having a finite
and possibly unknown PDF.

2.7 Log-Normal Distribution

If a random variable y is distributed is distributed according to a normal PDF with
average � and standard deviation � , the variable x D ey is distributed according to
the following PDF, called log-normal distribution:

f .xI�; �/ D 1

x�
p
2�

exp

�

� .ln x � �/2
2�2

�

: (2.28)

The PDF in Eq. (2.28) can be derived from Eq. (2.17) from Sect. 2.4 in the case
of a normal PDF. A log-normal variable has the following average and standard
deviation:

hxi D e�C�2=2 ; (2.29)

�x D e�C�2=2pe�2 � 1 : (2.30)

Note that Eq. (2.29) implies that heyi > ehyi for a normal random variable y. In fact,
since e�

2=2 > 1:

heyi D hxi D e�e�
2=2 > e� D ehyi :
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Fig. 2.3 Lognormal distributions with different parameters � and �

Examples of lognormal distributions are shown in Fig. 2.3 for different values of
� and � .

2.8 Exponential Distribution

An exponential distribution of a variable x � 0 is characterized by a PDF
proportional to e��x, where � is a constant. Considering the normalization condition
from Eq. (2.4), the complete expression of an exponential PDF is given by:

f .x/ D �e��x : (2.31)

Examples of exponential distributions are shown in Fig. 2.4 for different values of
the parameter �.

Exponential distributions are widely used in physics.
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Fig. 2.4 Exponential distributions with different values of the parameter �

δt
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t  = 0 t0 1

Fig. 2.5 An horizontal axis representing occurrence times (dots) of some events. The time origin
(t0 D 0) is marked as a cross

Example 2.4 – Relation Between Uniform and Exponential Distributions

One interesting problem where an exponential distribution occurs is the
distribution of the occurrence time of the first in a sequence of events, or also
the time difference between two consecutive events, whose occurrence time is
uniformly distributed over a indefinitely wide time range. An example of such
a case is sketched in Fig. 2.5. The distribution of the occurrences time t1 of
the first events with respect to a reference time t0 D 01 can be determined as
follows.

1This instant could also coincide with the occurrence of one of the considered events in order
to apply the same derivation the time difference of two consecutive events.
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Let’s consider a time t and another time t Cıt, where ıt � t. We will compute
first the probability P.t1 > tCıt/ that t1 is greater than tCıt, which is equal to
the probability P.0; Œ0; tCıt
/ that no event occurs in the time interval Œ0; tCıt
.
The probability P.0; Œ0; t C ıt
/ is equal to the probability that no event occurs
in the interval Œ0; t
 and no event occurs in the interval Œt; t C ıt
. Since the
occurrences of events in two disjoint time intervals are independent events,
the combined probability is the product of the two probabilities P.0; Œ0; t
/ and
P.0; Œt; t C ıt
/:

P.0; Œ0; t C ıt
/ D P.0; Œ0; t
/P.0; Œt; t C ıt
/ : (2.32)

Given the rate r of event occurrences, i.e. the expected number of events per
unit of time, the probability to have one occurrence in a time interval ıt is
given by:

P.1; Œt; t C ıt
/ D rıt ; (2.33)

and the probability to have more than one occurrence can be can be neglected
with respect to P.1Œt; t C ıt
/ D rıt at O.ıt2/. So, the probability to have zero
events in ıt is equal to:

P.0; Œt; t C ıt
/ ' 1 � P.1; Œt; t C ıt
/ D 1 � rıt ; (2.34)

and we can write:

P.0; Œ0; t C ıt
/ D P.0; Œ0; t
/.1 � rıt/ ; (2.35)

or, equivalently:

P.t1 > t C ıt/ D P.t1 > t/.1 � rıt/ : (2.36)

From Eq. (2.36), we can also write:

P.t1 > t C ıt/ � P.t1 > t/

ıt
D �rP.t1 > t/ : (2.37)

In the limit ıt ! 0, this leads to the following differential equation:

dP.t1 > t/

dt
D �rP.t1 > t/ : (2.38)
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Considering the initial condition P.t1 > 0/ D 1, Eq. (2.38) has the following
solution:

P.t1 > t/ D e�rt : (2.39)

The probability distribution function of the occurrence of the first event can be
written as:

P.t/ D P.t < t1 < t C ıt/

ıt
D dP.t1 < t/

dt
; (2.40)

where:

P.t1 < t/ D 1 � P.t1 > t/ D 1 � e�rt : (2.41)

Performing the first derivative with respect to t we have:

P.t/ D d.P.t1 < t//

dt
D d.1� e�rt/

dt
; (2.42)

hence:

P.t/ D re�rt : (2.43)

The exponential distribution is characteristic of particles lifetimes. The
possibility to measure an exponential distribution with the same (logarithmic)
slope � independently on the initial time t0 allows to measure particle lifetimes
without the need to measure the particle’s creation time, as it is the case with
cosmic-ray muons whose lifetime can be measured at sea level, while the muon
has been created in the high atmosphere.

2.9 Poisson Distribution

A discrete variable n is said to be a Poissonian variable if it obeys the Poisson
distribution defined below for a given value of the parameter �:

P.nI �/ D �ne��

nŠ
: (2.44)
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Fig. 2.6 Poisson distributions with different rate parameter
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Fig. 2.7 A uniform distribution of events in a variable x. Two intervals are shown of sizes x and
X, where x � X

Examples of Poisson distributions are shown in Fig. 2.6 for different values of the
rate parameter �. It’s easy to show that the average and variance of a Poisson
distribution are both equal to �.

Example 2.5 – Relation Between Uniform, Binomial and Poisson Distri-
butions

In the previous Example 2.4, a uniform distribution of a variable t over an
indefinitely wide range gave raise to an exponential distribution of the first
occurrence time t1 with respect to a given reference time t0.

We will now consider again a uniformly distribution of a variable, this time
we will call it x, over an indefinitely wide range (x could be either a time or
space variable, in many concrete examples) whose rate r is known in order to
determine the distribution of the number of events present in a finite interval
of x. The rate r can be written as N=X, where N is the number of events that
occur in an interval X that is much larger than the range of the variable x we
are considering (Fig. 2.7). We will eventually take the limit N ! 1, X ! 1,
keeping constant the ratio N=X D r.
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We can consider N and X as constants, i.e. quantities not subject to random
fluctuation (consider, for instance, the total number of cosmic rays in a year
time, in the case you want to measure the number of cosmic rays passing in a
second). If N is fixed and n is the number of events that occur in an interval
x � X, we expect a number of events:

� D Nx

X
D rx : (2.45)

The variable n is subject to the binomial distribution (see Sect. 1.11):

P.nI �;N/ D NŠ

nŠ.N � n/Š

� �

N

�n �
1 � �

N

�N�n
; (2.46)

that can also be written as:

P.nI �;N/ D �n

nŠ

N.N � 1/ � � � .N � n C 1/

Nn

�
1 � �

N

�N �
1 � �

N

��n
:

(2.47)
In the limit of N ! 1, the first term, �n

nŠ , remains unchanged, while the
remaining three terms tend to 1, e�� and 1 respectively. We can write the
distribution of n in this limit, which is equal to the Poisson distribution:

P.nI �/ D �ne��

nŠ
: (2.48)

Poisson distributions have several interesting properties, some of which are listed
in the following.

• For large �, the Poisson distribution can be approximated with a Gaussian having
average � and standard deviation

p
�.

• A Binomial distribution characterized by a number of extractions N and probabil-
ity p � 1 can be approximated with a Poisson distribution with average � D pN
(this was seen in the Example 2.5 above).

• If we consider two variables n1 and n2 that follow Poisson distributions with
averages �1 and �2 respectively, it is easy to demonstrate, using Eq. (1.30) and a
bit of mathematics, that the sum n D n1Cn2 follows again a Poisson distribution
with average �1 C �2. In other words:

P.nI �1; �2/ D
nX

n1D0

n�n1X

n2D0
Poiss.n1I �1/ Poiss.n2I �2/ D Poiss.nI �1 C �2/

(2.49)
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This property descends from the fact that adding two uniform processes similar
to what was considered in the example above, leads again to a uniform process,
where the total rate is the sum of the two rates.

• Similarly, if we take a random fraction " of the initial uniform sample, again
we have a uniform sample that obeys the Poisson distribution. It can be
demonstrated, in fact, that if we have a Poisson variable n0 with an expected rate
�0 and we consider the variable n distributed according to a binomial distribution
with probability " and size of the sample n0, the variable n is again distributed
according to a Poisson distribution with average � D "�0. In other words:

P.nI �0; "/ D
1X

n0D0
Poiss.n0I �0/Binom.nI n0; "/ D Poiss.nI "�0/ (2.50)

This is the case in which, for instance, we count the number of events from a
Poissonian process recorded by a detector whose efficiency " is not ideal (" < 1).

2.10 Other Distributions Useful in Physics

Other PDF that are used in literature are presented in the following subsections.
Though the list is not exhaustive, it covers the most commonly used PDF models.

2.10.1 Argus Function

The Argus collaboration introduced [1] a function that models many cases of
combinatorial backgrounds where kinematical bounds produce a sharp edge. The
Argus PDF is given by:

A.xI � I �/ D Nx

r

1 �
� x

�

�2
e� 1

2 �
2
h
1�. x

� /
2
i

; (2.51)

where N is a normalization coefficient which depends on the parameters � and �.
Examples of Argus distributions are shown in Fig. 2.8 for different values of the
parameters � and �. One advantage of this function is that its primitive function
can be computed analytically, saving some computer time in the evaluation of the
normalization coefficient N in Eq. (2.51). Assuming �2 � 0, the normalization
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Fig. 2.8 Argus distributions with different parameter values

condition for the Argus PDF can be written as follows:

1

N

Z

A.xI �; �/ dx

D �2

�2

(

e� 1
2 �
2
h
1�.1� x

� /
2
ir

1 � x2

�2
�
r

�

2�2
erf

s
1

2
�2
�

1 � x2

�2

�)

; (2.52)

and the normalized expression of the Argus function becomes:

A.xI � I �/ D �3p
2�‰.�/

x

�2

r

1 �
� x

�

�2
e� 1

2 �
2
h
1�. x

� /
2
i

; (2.53)

where ‰.�/ D ˆ.�/ � ��.�/ � 1
2
, �.�/ being a standard normal distribution

(Eq. (2.25)) and ˆ.�/ its cumulative distribution (Eq. (2.26)).

2.10.2 Crystal Ball Function

Some random variables only approximately follow a Gaussian distribution, but
exhibit an asymmetric tail on one of the two sides. In order to provide a description
to such distributions, the collaboration working on the Crystal ball experiment at
SLAC defined the following PDF [2] where a power-law distribution is used in
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place of one of the two Gaussian tail, ensuring the continuity of the function and its
first derivative. The Crystal ball PDF is defined as:

CB.xI˛; n; Nx; �/ D N �
(

exp
�
� .x�Nx/2

2�2

�
for x�Nx

�
> �˛

A
�
B � x�Nx

�

	�n
for x�Nx

�
� �˛

; (2.54)

where N is a normalization coefficient while A and B can be determined imposing
the continuity of the function and its first derivative, which give:

A D
�

n

j˛j
�n

e� ˛2

2 ; B D n

j˛j � j˛j : (2.55)

The parameter ˛ determines the starting point of the power-law tail, measured in
units of � (the Gaussian “core” standard deviation).

Examples of Crystal ball distributions are shown in Fig. 2.9 where the parameter
˛ has been varied, while the parameters of the Gaussian core have been fixed at
� D 0, � D 1 and the power-law exponent was fixed at n D 2.
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Fig. 2.9 Crystal ball distributions with � D 0, � D 1, n D 2 and different values of the tail
parameter ˛
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2.10.3 Landau Distribution

A model that describes the fluctuations in energy loss of particles in a thin layers of
matter is due to Landau [3, 4]. The distribution of the energy loss x is given by the
following integral expression:

L.x/ D 1

�

Z 1

0

e�t log t�xt sin.�t/ dt : (2.56)

More frequently, the distribution is shifted by a constant � and scaled by a constant
� , assuming the following expression:

L.xI�; �/ D L
�x � �

�

�
: (2.57)

Examples of Landau distributions are shown in Fig. 2.10 for different values of
� fixing � D 0. This distribution is also used as empiric model for asymmetric
distributions.
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Fig. 2.10 Landau distributions with � D 0, and different values of �
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2.11 Central Limit Theorem

Given N independent random variables, x1; � � � ; xN , each distributed according to a
PDF having finite variance, the average of those N variables can be approximated, in
the limit of N ! 1, to a Gaussian distribution, regardless of the underlying PDFs.

The demonstration of this theorem is not reported here, but quantitative approx-
imate demonstrations of the central limit theorem for specific cases are easy to
perform using numerical simulations (Monte Carlo techniques, see Chap. 4).

Two examples of such numerical exercises are shown in Figs. 2.11 and 2.12
where multiple random extractions from two different PDFs are summed and
divided by the square root of the number of generated variables, so that this
combination has the same variance of the original distribution. The distributions
obtained with a large randomly-extracted sample are plotted, superimposed to a
Gaussian distribution.
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Fig. 2.11 Approximate visual demonstration of the central limit theorem using a Monte Carlo
technique. A random variable x1 is generated uniformly in the interval Œ�p

3;
p
3Œ, in order to

have average value � D 0 and standard deviation � D 1. The top-left plot shows the distribution
of 105 random extractions of x1; the other plots show 105 random extractions of .x1 C x2/=

p
2,

.x1 C x2 C x3/=
p
3 and .x1 C x2 C x3 C x4/=

p
4 respectively, where all xi obey the same uniform

distribution as x1 . A Gaussian curve with � D 0 and � D 1, with proper normalization in order
to match the sample size, is superimposed to the extracted sample in the four cases. The Gaussian
approximation is more and more stringent as a larger number of variables is added
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Fig. 2.12 Same as Fig. 2.11, using a PDF that is uniformly distributed in two disjoint intervals,
Œ� 3

2
;� 1

2
Œ and Œ 1

2
; 3
2
Œ, in order to have average value � D 0 and standard deviation � D 1. The

sum of 1, 2, 3, 4, 6 and 10 independent random extractions of such a variable, divided by
p

n,
n D 1; 2; 3; 4; 6; 10 respectively, are shown with a Gaussian distribution having � D and � D 1

superimposed
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2.12 Convolution of Probability Distribution Functions

A typical problem in data analysis is to combine the effect of the detector response,
e.g.: due to finite resolution, with the theoretical distribution of some observable
quantity x. If the original theoretical distribution is given by f .x/ and, for a measured
value x0 of the observable x, the detector response distribution is given by r.xI x0/, the
PDF that describes the distribution of the measured value of x, taking into account
both the original theoretical distribution and the detector response, is give by the
convolution of the two pdf f and r, defined as:

g.x/ D
Z

f .x0/r.xI x0/ dx0 : (2.58)

in many cases r only depends on the difference x � x0, and can be described by a
one-dimensional pdf: r.xI x0/ D r.x � x0/. Sometimes the notation g D f ˝ r is also
used in those cases.

Convolutions have interesting properties under Fourier transform. In particular,
let’s define as usual the Fourier transform of f as:

Of .k/ D
Z C1

�1
f .x/e�ikx dx ; (2.59)

and conversely the inverse transform as:

f .x/ D 1

2�

Z C1

�1
Of .k/eikx dk : (2.60)

It is possible to demonstrate that the Fourier transform of the convolution of two
PDF is given by the product of the Fourier transforms of the two PDF, i.e.:

1f ˝ g D Of Og : (2.61)

Conversely, also the Fourier transform of the product of two PDF is equal to the
convolution of the two Fourier transforms, i.e.:

bfg D Of ˝ Og : (2.62)

This property allows in several applications to easily perform convolutions using
numerical algorithms that implement the fast Fourier transform (FFT) [5].

A widely used model for detector resolution is a Gaussian PDF:

r.xI x0/ D g.x � x0/ D 1p
2��

e� .x�x0/2

2�2 : (2.63)
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The Fourier transform of a Gaussian PDF, like in Eq. (2.63), can be computed
analytically and is given by:

Og.k/ D e�ik�e� �2k2
2 : (2.64)

The above expression can be used to simplify the implementation of numerical
algorithms that compute FFTs.

2.13 Probability Distribution Functions
in More than One Dimension

Probability densities can be defined in spaces with more than one dimension. In the
simplest case of two-dimensions, the PDF f .x; y/ measures the probability density
per unit area, i.e. the ratio of the probability dP corresponding to an infinitesimal
interval around a point .x; y/ and the area of the interval dx dy:

dP

dx dy
D f .x; y/ : (2.65)

In three dimensions the PDF measures the probability density per volume area:

dP

dx dy dz
D f .x; y; z/ ; (2.66)

and so on for more dimensions. A multidimensional PDF is also called joint
probability distribution.

2.13.1 Marginal Distributions

Given a two-dimensional PDF f .x; y/, the marginal distributions are the probability
distributions of the two variables x and y and can be determined by integrating f .x; y/
over the other coordinate, y and x, respectively:

fx.x/ D
Z

f .x; y/ dy ; (2.67)

fy.y/ D
Z

f .x; y/ dx : (2.68)
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The above expressions can also be seen as a special case of continuous variable
transformation, as described in Sect. 2.4, where the applied transformations maps
the two variables into one of the two: .x; y/ ! x or .x; y/ ! y.

More in general, if we have a PDF in n D h C k variables .Ex; Ey/ D .x1; � � � ; xh;

y1; � � � ; yk/, the marginal PDF of the subset of h variables .x1; � � � ; xh/ can be
determined by integrating the PDF f .Ex; Ey/ over the remaining set of variables
.y1; � � � ; yk/:

fEx.Ex/ D
Z

f .Ex; Ey/ dky : (2.69)

A pictorial view that illustrates the interplay between the joint distribution f .x; y/
and the marginal distributions fx.x/ and fy.y/ is shown in Fig. 2.13. Let’s remember
that, according to Eq. (1.6), two events A and B are independent if P.A \ B/ D
P.A/P.B/. In the case shown in Fig. 2.13 we can consider as events A and B the
cases where the two variables Ox and Oy are extracted in the intervals Œx; x C ıxŒ and
Œy; y C ıyŒ, respectively:

A D “x � Ox < x C ıx” (2.70)

and

B D “y � Oy < y C ıy” : (2.71)

Fig. 2.13 In the
two-dimensional plane .x; y/,
a slice in x corresponds to a
probability ıP.x/ D fx.x/ıx,
a slice in y corresponds to a
probability ıP.y/ D fy.y/ıy,
and their intersection to a
probability
ıP.x; y/ D f .x; y/ıxıy

δP(x)

δP(y)

δP(x, y)

x

y
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So, we have:

P.A \ B/ D “x � Ox < x C x and y � Oy < y C ıy” D f .x; y/ıxıy : (2.72)

Since:

P.A/ D ıP.x/ D fx.x/ıx (2.73)

and:

P.B/ D ıP.y/ D fy.y/ıy ; (2.74)

we have:

P.A/P.B/ D ıP.x; y/ D fx.x/fy.y/ıxıy : (2.75)

The equality P.A \ B/ D P.A/P.B/ holds if and only if f .x; y/ can be factorized
into the product of the two marginal PDFs:

f .x; y/ D fx.x/fy.y/ : (2.76)

From this result, we can say that x and y are independent variables if their joint
PDF can be written as the product of a PDF of the variable x times a PDF of the
variable y.

More in general, n variables x1; � � � ; xn are said to be independent if their n-
dimensional PDF can be factorized into the product of n one-dimensional PDF in
each of the variables:

f .x1; � � � ; xn/ D f1.x1/ � � � fn.xn/ : (2.77)

In a less strict sense, the variables sets Ex D .x1; � � � ; xn/ and Ey D .y1; � � � ; ym/ are
independent if:

f .Ex; Ey/ D fx.Ex/fy.Ey/ : (2.78)

Note that if two variable x and y are independent, it can be easily demonstrated
that they are also uncorrelated, in the sense that their covariance (Eq. (1.22)) is null.
Conversely, if two variables are uncorrelated, they are not necessarily independent,
as shown in the Example 2.6 below.
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Example 2.6 – Uncorrelated Variables that Are Not Independent

An example of PDF that describes uncorrelated variables that are not indepen-
dent is given by the sum of four two-dimensional Gaussian PDFs as specified
below:

f .x; y/ D 1

4
.g.xI�; �/g.yI 0; �/C g.xI ��; �/g.yI 0; �/

g.xI 0; �/g.yI�; �/C g.xI 0; �/g.yI ��; �// ;
(2.79)

where g is a one-dimensional Gaussian distribution.
This example is illustrated in Fig. 2.14 which plots the PDF from Eq. (2.79)

with numerical values � D 2:5 and � D 0:7.
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Fig. 2.14 Example of a PDF of two variables x and y that are uncorrelated but are not independent
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Considering that, for a variable z distributed according to g.zI�; �/, the
following relations hold:

hzi D � ;˝
z2
˛ D �2 C �2 ;

it is easy to demonstrate that for x and y obeying the PDF in Eq. (2.79), the
following relations also hold:

hxi D hyi D 0 ;
˝
x2
˛ D ˝

y2
˛ D �2 C �2

2
;

hxyi D 0 :

Hence, according to Eq. (1.22), cov.x; y/ D 0. Hence, x and y are uncorrelated,
but are clearly not independent because the PDF in Eq. (2.79) can’t be
factorized into the product of two PDF: there is no pair of functions fx.x/
andfy.y/ such that f .x; y/ D fx.x/fy.y/.

2.13.2 Conditional Distributions

Given a two-dimensional PDF f .x; y/ and a fixed value x0 of the variable x, the
conditional PDF of y given x0 is defined as:

f .yjx0/ D f .x0; y/R
f .x0; y0/ dy0 : (2.80)

It can be interpreted as being obtained by “slicing” f .x; y/ at x D x0 and normalizing
the “sliced” one-dimensional PDF. Reminding Eq. (1.4), and considering again the
example in Fig. 2.13, this definition of conditional distribution is consistent with the
definition of conditional probability: P.AjB/ D P.A \ B/=P.B/, where A D“y �
Oy < y C ıy”, Oy being the extracted value of y, and B D “x � x0 < x C ıx”,

An illustration of conditional PDF is shown in Fig. 2.15.
In more than two dimensions, we can generalize Eq. (1.4) for a PDF of n n D

h C k variables .Ex; Ey/ D .x1; � � � ; xh; y1; � � � ; yk/ as:

f .EyjEx0/ D f .Ex0; Ey/R
f .Ex0; Ey/ dy0

1 � � � dy0
k

: (2.81)
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Fig. 2.15 Illustration of conditional PDF in two dimensions

2.14 Gaussian Distributions in Two or More Dimensions

Let’s consider in a two-dimensional variable space .x0; y0/ the product of two
Gaussian distributions for the variables x0 and y0 having standard deviations �x0 and
�y0 respectively and for simplicity having both averages �x D �y D 0 (a translation
can always be applied to generalize to the case �x; �y ¤ 0):

g0.x0; y0/ D 1

2��x0�y0

exp

"

�1
2

 
x02

�2x0

C y02

�2y0

!#

: (2.82)

Let’s apply a rotation from .x0; y0/ to .x; y/ with an angle � defined by:



x0 D x cos� � y sin �
y0 D x sin� C y cos�

: (2.83)

The transformed PDF g.x; y/ can be obtained using Eq. (2.20) considering that
det
ˇ
ˇ@x0

i=@xj

ˇ
ˇ D 1, which leads to g0.x0; y0/ D g.x; y/. g.x; y/ has the form:

g.x; y/ D 1

2�jCj 12
exp

�

�1
2

�

.x; y/C�1
�

x
y

���

; (2.84)
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where the matrix C�1 is the inverse of the covariance matrix of the variables .x; y/.
C�1 can be obtained by comparing Eqs. (2.82) and (2.84), from which one can
substitute the rotated coordinates defined Eq. (2.83) in the following equation:

x02

�2x0

C y02

�2y0

D .x; y/C�1
�

x
y

�

; (2.85)

leading to:

C�1 D

0

B
B
@

cos2 �
�2

x0

C sin2 �
�2

y0

sin � cos�

�
1

�y02
� 1

�2
x0

�

sin � cos�

�
1

�y02
� 1

�2
x0

�
sin2 �
�2

x0

C cos2 �
�2

y0

1

C
C
A : (2.86)

The determinant of C�1 that appears in the denominator of Eq. (2.84) under a square
root is:

jC�1j D 1

�2x0�
2
y0

D 1

�2x �
2
y .1 � �2xy/

; (2.87)

where �xy is the correlation coefficient defined in Eq. (1.23). Inverting the matrix
C�1, we can get the covariance matrix of the rotated variables .x; y/:

C D
 

cos2 ��2x0 C sin2 ��2y0 sin� cos�.�2y0 � �2x0/

sin � cos�.�2y0 � �2x0/ sin2 ��2x0 C cos2 ��2y0

!

: (2.88)

Considering that a covariance matrix should have the form:

C D
 
�2x �xy�x�y

�xy�x�y �2y

!

; (2.89)

the variances and correlation coefficient of x and y can be determined as:

�2x D cos2 ��2x0 C sin2 ��2y0 ; (2.90)

�2y D sin2 ��2x0 C cos2 ��2y0 ; (2.91)

�xy D cov.x; y/

�x�y
D sin 2�.�2y0 � �2x0/
q

sin 2�.�4x0 C �4y0/C 2�2x0�
2
y0

: (2.92)

The last Eq. (2.92), implies that the correlation coefficient is equal to zero if either
�y0 D �x0 or if � is a multiple of �

2
. We also have the following relation that gives
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tan 2� in terms of the elements of the covariance matrix:

tan 2� D 2�xy�x�y

�2y � �2x
: (2.93)

The transformed PDF can be finally written as:

g.x; y/ D 1

2��x�y

q
1 � �2xy

exp

"

� 1

2.1� �2xy/

 
x2

�2x
C y2

�2y
� 2xy�xy

�x�y

!#

:

(2.94)

The geometrical interpretation of �x and �y in the rotated coordinate system is shown
in Fig. 2.16, where the one-sigma ellipse obtained from the following equation is
drawn:

x2

�2x
C y2

�2y
� 2xy�xy

�x�y
D 1 : (2.95)

It is possible to demonstrate that the distance of the horizontal and vertical tangent
lines to the ellipse have a distance from their respective axes equal to �y and �x

respectively.

Fig. 2.16 Plot of the one-sigma contour for a two-dimensional Gaussian PDF. The two ellipse
axes are equal to �x0 and �y0 ; the x0 axis is rotated of an angle � with respect to the x axis and the
lines tangent to the ellipse parallel to the x and y axes have a distance with respect to the respective
axes equal to �y and �x respectively
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Projecting the two-dimensional Gaussian on one of the two coordinates from
Eq. (2.94), one obtains the marginal PDFs:

gx.x/ D
Z C1

�1
g.x; y/ dy D 1

q
2��2x

e
� x2

2�2x ; (2.96)

gy.y/ D
Z C1

�1
g.x; y/ dx D 1

q
2��2y

e
� y2

2�2y : (2.97)

In general, projecting a two-dimensional Gaussian PDF in any direction leads to a
one-dimensional Gaussian whose standard deviation is equal to the distance of the
tangent line to the ellipse perpendicular to the axis along which the two-dimensional
Gaussian is projected. This is visually shown in Fig. 2.17.

The probability corresponding to a Z� one-dimensional interval for a Gaussian
distribution was reported in Eq. (2.27). In order to extend this result for the two-
dimensional case, the integration of g.x; y/ should be performed in two dimension
over the ellipse that corresponding to Z� :

P2D.Z�/ D
Z

EZ

g.x; y/ dx dy ; (2.98)

1σ

1σ2σ

2σ

Fig. 2.17 Plot of the two-dimensional one- and two-sigma Gaussian contours



50 2 Probability Distribution Functions

where

EZ D
(

.x; y/ W x2

�2x
C y2

�2y
� 2xy�xy

�x�y
� Z

)

: (2.99)

The integral P2D.Z�/ simplifies to:

P2D.Z�/ D
Z Z

0

e� r2
2 r dr D 1 � e� Z2

2 ; (2.100)

that can be compared to the one-dimensional case:

P1D.Z�/ D
r
2

�

Z Z

0

e� x2
2 dx D erf.

Zp
2
/ : (2.101)

The probabilities corresponding to 1� , 2� and 3� are reported for the one- and two-
dimensional cases in Table 2.1. The two-dimensional integrals are in all case smaller
than the one-dimensional case for a given Z. In particular, to recover the same
probability as the one-dimensional interval, one has to enlarge the two-dimensional
ellipse from 1� to 1:515� , from 2� to 2:486� , and from 3� to 3:439� .

Figure 2.17 shows the 1� and 2� contours for a two-dimensional Gaussian, and
three possible choices of 1� and 2� one-dimensional bands, two along the x and y
axes and one along a third generic oblique direction.

The generalization to n dimensions of the two-dimensional Gaussian described
in Eq. (2.94) is:

g.x1; � � � ; xn/ D 1

.2�/
n
2 jCj� 1

2

exp

�

�1
2

�
.xi � �i/C

�1
ij .xj � �j/

	
�

; (2.102)

where �i is the average of the variable xi and Cij is the n � n covariance matrix of
the variables x1; � � � ; xn.

Table 2.1 Probabilities
corresponding to Z�
one-dimensional and
two-dimensional contours for
different values of Z

P1D P2D

1� 0.6827 0.3934

2� 0.9545 0.8647

3� 0.9973 0.9889

1:515� 0.8702 0.6827

2:486� 0.9871 0.9545

3:439� 0.9994 0.9973
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Chapter 3
Bayesian Approach to Probability

The Bayesian approach to probability allows to define in a quantitative way
probabilities associated to statement whose truth or falsity is not known. This also
applies to the knowledge of unknown parameters in physics, allowing to assign a
probability to the possibility that a parameter’s value lies within a certain interval.

The mathematical tools needed to define a quantitative treatment of such cases
start from an extension of the Bayes’ theorem. Bayes’ theorem, presented in the
following section, has general validity for any probability approach, including
frequentist probability.

3.1 Bayes’ Theorem

According to the definition of conditional probability in Eq. (1.4), the probability of
an event A given the condition that the event B has occurred is given by:

P.AjB/ D P.A \ B/

P.B/
: (3.1)

We can conversely write the probability of the event B given the event A as:

P.BjA/ D P.A \ B/

P.A/
: (3.2)

This situation is visualized in Fig. 3.1. Extracting from Eqs. (3.1) and (3.2) the
common term P.A \ B/, we obtain:

P.AjB/P.B/ D P.BjA/P.A/ ; (3.3)

© Springer International Publishing Switzerland 2016
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P(A)= P(B)=

P(A|B)= P(B|A)=

Ω
A

B

Fig. 3.1 Visualization of the conditional probabilities, P.AjB/ and P.BjA/ due to Robert Cousins.
The events A and B are represented as subsets of a sample space �

from which the Bayes’ theorem can be derived in the following form:

P.AjB/ D P.BjA/P.A/
P.B/

: (3.4)

The probabilities P.A/ and P.AjB/ can be interpreted as probability of the event A
before the knowledge that the event B has occurred (prior probability) and as the
probability of the same event A having as further information the knowledge that
the event B has occurred (posterior probability).

A visual derivation of Bayes’ theorem, due to Robert Cousins, is presented in
Fig. 3.2.
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P(A|B)P(B)=

P(B|A)P(A)=

X = =P(A B)

X = =P(A B)

Fig. 3.2 Visualization of the Bayes’ theorem due to Robert Cousins. The areas of events A an B,
P.A/ and P.B/ respectively, simplify as we multiply P.AjB/P.B/ and P.BjA/P.A/

Example 3.7 – An Epidemiology Example

One of the most popular concrete applications of Bayes’ theorem occurs in
the “inversion” of conditional probability. The most popular case consists of
finding the probability that a person who received a positive diagnosis of some
a illness is really ill, knowing the probability that the test may give a false
positive outcome. This example has been reported in several lecture series and
books, for instance, in [1, 2].

Imagine a person has received a diagnosis of a illness through a test. We
know that, if a person is really ill, the probability that the test gives a positive
result is 100 %. But the test has also a small probability, say 0.2 %, to give a
false positive result on a healthy person.

If a random person does the test, and receives a positive diagnosis, what is
the probability that he/she is really ill? The naïve answer that this probability
is 100% � 0:2% D 99:8% is clearly wrong, as will be more clear in the
following. But if this question is asked to a person who has a limited statistical
background, it is a very likely answer to receive.

The problem can be formalized as follows:

P.Cjill/ ' 100% ; (3.5)

P.�jill/ ' 0% ; (3.6)

P.Cjhealthy/ D 0:2% ; (3.7)

P.�jhealthy/ D 99:8% : (3.8)
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What we want to know is the probability that a person is really ill after having
received a positive diagnosis, i.e.: P.illjC/. Using Bayes’ theorem, we can
“invert” the conditional probability as follows:

P.illjC/ D P.Cjill/P.ill/
P.C/ ; (3.9)

which, given that P.Cjill/ ' 1, gives approximately:

P.illjC/ ' P.ill/

P.C/ : (3.10)

We can now identify a missing ingredient in the problem: we need to know
P.ill/, i.e.: the probability that a random person in the population under
consideration is really ill (regardless of any possibly performed test). In a
normal situation of a generally healthy population, we will have P.ill/ �
P.healthy/. Using:

P.ill/C P.healthy/ D 1 ; (3.11)

and:

P.ill and healthy/ D 0 ; (3.12)

we can decompose P.C/ as follows, according to the law of total probability,
in Eq. (1.12) (from Sect. 1.7):

P.C/ D P.Cjill/P.ill/C P.Cjhealthy/P.healthy/ ' P.ill/C P.Cjhealthy/ :
(3.13)

The probability P.illjC/ can then be written as:

P.illjC/ D P.ill/

P.C/ ' P.ill/

P.ill/C P.Cjhealthy/
: (3.14)

If we assume that P.ill/ is smaller than P.Cjhealthy/ then P.illjC/ will result
smaller than 50%. For instance, if P.ill/ D 0:15%, compared with the
assumption that P.Cjhealthy/ D 0:2%, then

P.illjC/ D 0:15

0:15C 0:20
D 43% : (3.15)



3.1 Bayes’ Theorem 57

P(+|ill)

P(−|ill) 

P(ill) P(healthy)

P(+|healthy)

P(−|healthy)

Fig. 3.3 Visualization of the ill/healthy case considered in the Example 3.7. The red areas
correspond to the cases of a positive diagnosis for a ill person (P.Cjill/, vertical red area) and
a positive diagnosis for a healthy person (P.Cjhealthy/, horizontal red area). The probability of
being really ill in the case of a positive diagnosis, P.illjC/, is equal to the ratio of the vertical red
area and the total red area. In the example it was assumed that P.�jill/ ' 0

The probability to be really ill, given the positive diagnosis, is very different
from the naïve conclusion that one is most likely really hill. The situation
can be visualized, changing a bit the proportions for a better presentation, in
Fig. 3.3.

Having a high probability of a positive diagnosis in case of illness does not
imply that a positive diagnosis turns into a high probability of being really
ill. The correct answer, in this case, also depend on the prior probability for
a random person in the population to be ill, (P.ill/). Bayes’ theorem allows
to compute the posterior probability P.illjC/ in terms of the prior probability
and the probability of a positive diagnosis for a ill person, (P.Cjill/).

Example 3.8 – Purity of a Sample with Particle Identification

A derivation similar to the previous Example 3.7 can be applied to the case
of a detector that performs particle identification, where the conclusions will
be less counterintuitive than in the previous case, since this situation is very
familiar with a physicist’s experience.
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Consider, for instance, a muon detector that gives a positive signal for real
muons with an efficiency " D P.Cj�/ and gives a false positive signal for
pions with a probability ı D P.Cj�/. Given a collection of particles that can
be either muons or pions, what is the probability that a selected particle is
really a muon, i.e.: P.�jC/? As before, we can’t give an answer, unless we
also give the prior probability, i.e.: the probability that a random particle from
the sample is really a muon or pion. In other words, we should know P.�/ and
P.�/ D 1 � P.�/. Using Bayes’ theorem, together with Eq. (1.12), we can
write, as in the example from the previous section:

P.�jC/ D P.Cj�/P.�/
P.C/ D P.Cj�/P.�/

P.Cj�/P.�/C P.Cj�/P.�/ ; (3.16)

or, in terms of the fraction of muons f� D P.�/ and the fraction of pions
f� D P.�/ of the original sample, we can write purity of the sample, defined
as the fraction of muons in a sample of selected particles, as:

…� D f� ;C D "f�
"f� C ıf�

: (3.17)

Another consequence of Bayes’ theorem is the relation between ratios of
posterior probability and ratios of prior probability. The posteriors’ ratio can
in fact be written as:

P.�jC/
P.�jC/ D P.Cj�/

P.Cj�/ � P.�/

P.�/
: (3.18)

The above expression also holds if more than two possible particle types are
present in the sample, and does not require to compute the denominator that
is present in Eq. (3.16), which would be needed, instead, in order to compute
probabilities related to all possible particle cases.

3.2 Bayesian Probability Definition

So far, Bayes’ theorem has been applied in cases that also fall under the frequentist
domain. Let’s now consider again the following formulation of Bayes’ theorem, as
from Eq. (3.4):

P.AjB/ D P.BjA/P.A/
P.B/

: (3.19)
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We can interpret it as follows: before the occurrence of the event B (or knowledge
that B is true), our degree of belief of the event A is equal to the prior probability,
P.A/. After the occurrence of the event B (or after we know that B is true) our degree
of belief of the event A changes and becomes equal to the posterior probability
P.AjB/.

Using this interpretation, we can extend the scope of the definition of probability,
in this new Bayesian sense, to events that are not associated to random variables,
but represent statements about unknown facts, like “my football team will win next
match”, or “the mass of a dark-matter candidate particle is between 1000 and
1500 GeV”. We can in fact consider a prior probability P.A/ of such an unknown
statement, representing a measurement of our prejudice about that statement, before
the occurrence of any event that could modify our knowledge. After the event B
has occurred (and we know that B as occurred), our knowledge of A must change
in order to take into account the fact that we know B has occurred, and our degree
of belief should be modified becoming equal to the posterior probability P.AjB/. In
other words, Bayes theorem tells us how we should change our subjective degree of
belief from an initial prejudice considering newly available information, according
to a quantitative and rational method. Anyway, starting from different priors (i.e.:
different prejudices), different posteriors will be determined.

The term P.B/ that appears in the denominator of Eq. (3.4) can be considered
a normalization factor. If we can decompose the sample space � in a partition
A1; � � � ;An, where [n

iD1Ai D � and Ai \ Aj D 0 8i; j, we can write, according
to the law of total probability in Eq. (1.12):

P.B/ D
nX

iD1
P.BjAi/P.Ai/ : (3.20)

This decomposition was already used in the examples discussed in the previous
sections.

The Bayesian definition of probability obeys Kolmogorov’s axioms of probabil-
ity, as defined in Sect. 1.4, hence all properties of classical probability discussed in
Chap. 1 also apply to Bayesian probability.

An intrinsic unavoidable feature of Bayesian probability is that the probability
associated to an event A can’t be defined without having a prior probability of that
event, which make Bayesian probability intrinsically subjective.

Example 3.9 – Extreme Cases of Prior Beliefs

Consider a set of possible events fAig that constitute a non-intersecting
partition of �. Imagine that we have as prior probabilities:

P.Ai/ D
n
1 if i D 0

0 if i ¤ 0
: (3.21)
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This corresponds to a person that believes that A0 is absolutely true, all other
alternatives Ai are absolutely false for i ¤ 0. Whatever event B occurs, that
person’s posterior probability on any Ai will not be different from the prior
probability:

P.AijB/ D P.Ai/; 8B : (3.22)

In fact, from Bayes’ theorem:

P.AijB/ D P.BjAi/P.Ai/

P.B/
: (3.23)

But, if i ¤ 0, clearly:

P.AijB/ D P.BjAi/ � 0
P.B/

D 0 D P.Ai/ : (3.24)

If i D 0, instead, we have, assuming P.BjA0/ ¤ 0:

P.A0jB/ D P.BjA0/ � 1
Pn

iD1 P.BjAi/P.Ai/
D P.BjA0/

P.BjA0/ � 1 D 1 D P.A0/ : (3.25)

This situation reflects the case that we may call dogma, or religious belief, i.e.:
the case in which someone has such strong prejudices on Ai that no event B,
i.e.: no new knowledge, can change his/her degree of belief.

The scientific method allowed to evolve mankind’s knowledge of Nature
during history by progressively adding more knowledge based on the obser-
vation of reality. The history of science is full of examples in which theories
known to be true have been falsified by more precise observations, and new
better theories have replaced the old ones.

According to Eq. (3.22), instead, scientific progress is not possible in the
presence of religious beliefs about observable facts.

3.3 Bayesian Probability and Likelihood Functions

Given a sample .x1; � � � ; xn/ of n random variables whose PDF is known and
depends on m parameters, �1; � � � ; �m, the likelihood function is defined as the
probability density at the point .x1; � � � ; xn/ given a fixed set of values of the
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parameters �1; � � � ; �m:

L.x1; � � � ; xnI �1; � � � ; �m/ D dP.x1; � � � ; xn/

dx1 � � � dxn

ˇ
ˇ
ˇ
ˇ
�1;��� ;�m

: (3.26)

As alternative to the notation L.x1; � � � ; xnI �1; � � � ; �m/, sometimes the notation
L.x1; � � � ; xnj�1; � � � ; �m/ is also used equivalently, similarly to the notation used
in the definition of conditional probability. The likelihood function will be more
extensively discussed in Sect. 5.5.1.

From Eq. (3.26), we can define the posterior Bayesian probability distribution
function for the parameters �1; � � � ; �m, given the observation of .x1; � � � ; xn/, to be:

P.�1; � � � ; �mjx1; � � � ; xn/ D L.x1; � � � ; xnj�1; � � � ; �m/�.�1; � � � ; �m/R
L.x1; � � � ; xnj�1; � � � ; �m/�.�1; � � � ; �m/ dm�

;

(3.27)

where the probability distribution function �.�1; � � � ; �m/ is the prior PDF of the
parameters �1; � � � ; �m, i.e., our degree of belief about the m unknown parameters
before the observation of .x1; � � � ; xn/.

Fred James et al. gave the following interpretation of the posterior probability
density from Eq. (3.27): “The difference between �.�/ and P.� jx/ shows how
one’s knowledge (degree of belief) about � has been modified by the observation
x. The distribution P.� jx/ summarizes all one’s knowledge of � and can be used
accordingly” [3].

3.3.1 Repeated Use of Bayes’ Theorem and Learning Process

If we start from a prior probability distribution function P0.�/ D �.�/ of an
unknown parameter � , we can apply Bayes’ theorem after an observation x1, and
obtain a posterior probability:

P1.�/ / P0.�/L.x1j�/ ; (3.28)

where we have omitted the normalization factor:
R

P0.�/L.x1j�/ d� . After a second
independent observation x2, we can again apply Bayes’ theorem, considering that
the combined likelihood corresponding to the two measurements x1 and x2 is given
by the product of the corresponding likelihoods:

L.x1; x2j�/ D L.x1j�/L.x2j�/ : (3.29)

From Bayes theorem we now have:

P2.�/ / P0.�/L.x1; x2j�/ D P0.�/L.x1j�/L.x2j�/ ; (3.30)
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where we have again omitted a normalization factor. Equation (3.30) can be
interpreted as the application of Bayes’ theorem to the observation of x2 having
a prior probability P1.�/, i.e.: the posterior probability after the observation of x1,
P1.�/ (Eq. (3.28)). Considering a third independent observation x3 we can again
apply Bayes’ theorem and obtain:

P3.�/ / P2.�/L.x3j�/ D P0.�/L.x1j�/L.x2j�/L.x3j�/ : (3.31)

Adding more measurements would allow to apply repeatedly Bayes’ theorem. This
possibility allows to interpret the application of Bayes’ theorem as learning process,
where one’s knowledge about an unknown parameter is influenced and improved by
the subsequent observations x1, x2, etc.

The more measurement we add, the more the final posterior probability Pn.�/

will be insensitive to the choice of the prior probability P0.�/ D �.�/, because the
� range in which L.x1; � � � ; xnj�/ will be significantly different from zero will be
smaller and smaller, hence the prior �.�/ can be approximated to a constant value
within this small range, assuming we take a reasonably smooth function.

In this sense, a sufficiently large number of observation may remove, asymptot-
ically, any arbitrariness in posterior Bayesian probability, assuming that the prior is
a sufficiently smooth and regular function (e.g.: not in the extreme case mentioned
in the Example 3.9).

3.4 Bayesian Inference

Chapter 5 will discuss the problem of performing estimates of unknown parameters
using a frequentist approach. Given an observation Ex, one can use an algorithm hav-
ing good statistical properties, and in particular the maximum-likelihood estimator

(see Sect. 5.5) is one of the most adopted one, to determine an estimate
OE� of the

unknown parameter, or parameter set, E� as the values that maximize the likelihood
function. The limited knowledge about the unknown parameter turns into an error,
or uncertainty, of the parameter estimate. Section 5.6, and more extensively Chap. 6,
will discuss how to determine under the frequentist approach errors and confidence

intervals corresponding to a parameter estimate
OE� .

This section instead will briefly discuss how the estimate of unknown parameters
can be addressed in a straightforward way using the determination of posterior
Bayesian PDFs of the unknown parameters of interest E� using Eq. (3.27). First, the

most likely value of those parameters,
OE� , can be determined from the posterior PDF:

P.E� jEx/ D L.ExI E�/�.E�/
R

L.ExI E� 0/�. E� 0/ dh� 0 : (3.32)
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Similarly the average value
NE� can also be determined from the same posterior PDF.

In particular, if we assume a uniform prior distribution (this may not necessarily
the most natural choice), the most likely value, in the Bayesian approach, coincides
with the maximum-likelihood estimate, since the posterior PDF is equal, up to a
normalization constant, to the product of the likelihood function times the prior
PDF, which is assumed to be a constant:

P.E� jEx/
ˇ
ˇ
ˇ
�.E�/Dconst:

D L.ExI E�/
R

L.ExI E� 0/ dh� 0 : (3.33)

This result of course does not necessarily hold in the case a non-uniform prior PDF.
If we are interested only in a subset of the parameters, let’s say we have two

subset of parameters, E� D .�1; � � � ; �h/ which are parameters of interest and the
remaining parameters, E� D .�1; � � � ; �l/ which are needed to model our PDF, but
should not appear among our final results, the posterior PDF can be written as:

P.E�; E�jEx/ D L.ExI E�; E�/�.E�; E�/
R

L.ExI E� 0; E�0/�. E� 0; E�0/ dh� 0 dl�0 ; (3.34)

and the posterior PDF for the parameters E� can be obtained as marginal PDF,
integrating Eq. (3.34) over all the remaining parameters E�:

P.E� jEx/ D
Z

P.E�; E�jEx/ dl� D
R

L.ExI E�; E�/�.E�; E�/ dl�
R

L.ExI E� 0; E�0/�.E� 0; E�0/ dh� 0dl�0 : (3.35)

Given a posterior PDF for an unknown parameter of interest � , it is possible to
find intervals Œ�lo; �hi
 corresponding to—say—a 68 % probability (i.e.: equal to a
˙ one � interval for a normal distribution) such that the integral of the posterior
PDF from �lo to �hi corresponds to 68 %. The choice of the interval for a fixed
probability level, usually indicated as CLD 1 � ˛, anyway has still some degree of
arbitrariness, since one can choose different possible intervals all having the same
probability level 1 � ˛ (i.e.: equal area under the PDF curve, in the given interval).
Below some examples:

• a central interval Œ�lo; �hi
 such that the two complementary intervals 
 � 1; �loŒ

and 
�hi;C1Œ both correspond to probabilities of ˛=2;
• a fully asymmetric interval 
 � 1; �hi
 with corresponding probability 1 � ˛;
• a fully asymmetric interval 
�lo;C1
 with corresponding probability 1 � ˛;
• the interval Œ�lo; �hi
 with the smallest length corresponding to the specified

probability 1� ˛;
• a symmetric interval around the value with maximum probability O� : Œ�lo D O� �
ı; �hi D O� C ı
, corresponding to the specified probability 1 � ˛;

• : : : etc.
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Example 3.10 – Posterior for a Poisson Distribution

Let’s consider a simple case of a Poisson distribution P.njs/ of an integer
variable with an expectation value s. Assume we observe the value n. Using
Bayes posterior definition from Eq. (3.27), and assuming a prior PDF �.s/ for
s, we have:

P.sjn/ D
snn�s

nŠ
�.s/

Z 1

0

snn�s

nŠ
�.s/ ds

: (3.36)

If we take �.s/ to be a constant,1 the normalization factor in the denominator
becomes:

1

nŠ

Z 1

0

snes ds D � �.n C 1; s/

nŠ

ˇ
ˇ
ˇ
ˇ

1

0

D 1 ; (3.37)

hence we have:

P.sjn/ D sne�s

nŠ
; (3.38)

which has the same expression of the original Poisson distribution, but this
time it is interpreted as the posterior PDF of the unknown parameter s, given

the observation n. Using Eq. (3.38), we can determine that the most
probable value of s (according to the posterior in Eq. (3.38)) as:

Os D n : (3.39)

We also have:

hsi D n C 1 ; (3.40)

VarŒs
 D n C 1 : (3.41)

Note that the most probable value Os is different from the average value hsi.
Those results depend of course on the choice of the prior �.s/. We took
a uniform distribution for �.s/, but this is of course one of many possible
choices.

1Considering the prior choice due to Jeffreys, discussed in Sect. 3.7, a constant prior could
not be the most “natural” choice. Using Jeffreys’ prior in the case of a Poisson distribution
would give �.s/ / p

s.
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3.5 Bayes Factors

As seen at the end the Example 3.8, there is a convenient way to compare the
probability of two hypotheses using Bayes theorem which does not require the
knowledge of all possible hypotheses that can be considered. In the Bayesian
approach to probability, this can constitute an alternative to the hypothesis test (that
will be introduced in Chap. 7) adopted under the frequentist approach.

Using the Bayes theorem, one can write the ratio of posterior probabilities
evaluated under two hypotheses H0 and H1, given our observation Ex, also called
Bayes factor [4], as:

B1=0 D P.H1jEx/
P.H0jEx/ D P.ExjH1/

P.ExjH0/
� �.H1/

�.H0/
; (3.42)

where �.H1/ and �.H0/ are the priors for the two hypotheses.
The Bayes factor can be used as alternative to significance level (see Sect. 8.2)

adopted under the frequentist approach in order to determine the evidence of one
hypothesis H1 (e.g.: a signal due to a new particle is present in our data sample)
against a null hypothesis H0 (e.g.: no signal due to a new particle is present in our
data sample). The proposed scale for Bayes factor to assess the evidence of H1

against H0, as reported in [4], are presented in Table 3.1.
Introducing the likelihood function, the Bayes factor can also be written as:

B1=0 D
R

L.ExjH1; E�1/�.E�1/ dE�1
R

L.ExjH0; E�0/�.E�0/ dE�0
; (3.43)

where the parameters E�1 and E�0 required under the two hypotheses have been
introduced. As usual in Bayesian applications, the computation of the Bayes factors
requires integrations that in most of the realistic cases can be performed using
computer algorithms.

Table 3.1 Assessing
evidence with Bayes factors
according to the scale
proposed in [4]

B1=0 Evidence against H0

1–3 Not worth more than a bare mention

3–20 Positive

20–150 Strong

>150 Very strong
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3.6 Arbitrariness of the Prior Choice

The main concern expressed by frequentist statisticians regarding the use of
Bayesian probability is its intrinsic dependence on a prior probability that could
be chosen by the observer in an arbitrary way. This arbitrariness makes Bayesian
probability to some extent subjective, in the sense that it depends on one’s choice
of the prior probability which may change from subject to subject. We saw in the
Example 3.9 that, in extreme cases, extreme choices of prior PDFs may lead to
insensitiveness on the actual measurements.

It is also true, as remarked in Sect. 3.3.1, that, for reasonable choices of the prior
PDF, adding more and more measurements increases one’s knowledge about the
unknown parameter � , hence the posterior probability will be less and less sensitive
to the choice of the prior probability. In most of those cases, where a large number of
measurements is available, the application of Bayesian and frequentist calculations
tend to give identical results.

But it is also true that many interesting statistical problems arise in the cases with
small number of measurements, where the aim of the adopted statistical method is
to extract the maximum possible information from the limited available sample,
which is in general precious because it is the outcome of our complex and labour-
intensive experiment. In those cases, applying Bayesian or frequentist methods
usually leads to numerically different results, which should also be interpreted in
very different ways. In those cases, using the Bayesian approach, the choice of the
prior probabilities may play a crucial role and it may have relevant influence on the
results.

One of the main difficulty arises when choosing a probability distribution to
models one’s complete ignorance about an unknown parameter � . A frequently
adopted prior distribution in physics that models one’s complete lack of knowledge
about a parameter � is a uniform (“flat”) PDF in the interval of validity of � . But
it is clear that if we change the parametrization from the original parameter � to a
function of � (for instance in one dimension one may chose exp � , log � ,

p
� or 1=� ,

etc.), the resulting transformed parameter will no longer have a uniform prior PDF.
This is true, for instance, in the case of the measurement of a particle’s lifetime � .
Should one chose a PDF uniform in � , or in the particle’s width, � D 1=�? There is
no preferred choice provided by any first principle.

An approach to find a prior distribution that is invariant under reparametrization
is to use the prior’s choice proposed by Harold Jeffreys (see next Sect. 3.7). This
approach leads, except in a few cases, to prior PDFs that are not uniform. For
instance, for a Poissonian counting experiment, like the one considered in the
Example 3.10, Jeffreys’ prior is proportional to 1=

p
s, not uniform as assumed to

determine Eq. (3.38).
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This subjectiveness in the choice of the prior PDF is intrinsic to the Bayesian
approach and raises criticism by supporters of the frequentist approach, which
object that results obtained under the Bayesian approach are to some extent
subjective. Supporters of the Bayesian approach reply that Bayesian result are
intersubjective [5], in the sense that common prior choices lead to common results.
The debate is in some cases still open, and literature still contains opposite opinions
about this issue.

3.7 Jeffreys’ Prior

One possible approach to the choice of prior PDFs has been proposed by Harold
Jeffreys [6]. He proposed to adopt a choice of prior PDF in a form which results
invariant under parameter transformation. Jeffreys’ choice is, up to a normalization
factor, given by:

p.E�/ /
q

I.E�/ ; (3.44)

where I.E�/ is the determinant of the Fisher information matrix defined below:

I.E�/ D det

"*
@ ln L.Exj E�/

@�i

@ ln L.Exj E�/
@�j

+#

: (3.45)

It is not difficult to demonstrate that Jeffreys’ prior does not change when changing
parametrization, i.e.: transforming E� ! E� 0 D E� 0.E�/.

Jeffreys’ prior corresponding to the parameters of some of the most frequently
used PDFs are given in Table 3.2. Note that only the case of the mean of a Gaussian
gives a uniform Jeffreys’ prior.

Table 3.2 Jeffreys’ priors corresponding to the parameters of some of the most frequently used
PDFs

PDF parameter Jeffreys’ prior

Poissonian mean � p.�/ / 1
p
�

Poissonian signal mean � with a background b p.�/ / 1
p
�C b

Gaussian mean � p.�/ / 1

Gaussian standard deviation � p.�/ / 1=�

Binomial success fraction " p."/ / 1=
p
".1� "/
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3.8 Error Propagation with Bayesian Probability

In the case of Bayesian inference, error propagation proceeds naturally. The
outcome of a Bayesian inference process is a posterior PDF for the unknown
parameter(s). In order to obtain the PDF for a set of transformed parameters it is
sufficient to apply the results we saw in Sect. 2.4 concerning how PDF transform
under variables transformation. We remind here that, in the case of a two-variable
transformation, .x; y/ ! .x0; y0/ D .X0.x; y/;Y 0.x; y//, a PDF f .x; y/ transforms
according to:

f 0.x0; y0/ D
Z

ı.x0 � X0.x; y//ı.y0 � Y 0.x; y// f .x; y/ dx dy : (3.46)

Given f 0.x0; y0/, one can determine again, for the transformed parameters, the most
likely values, the average, and probability intervals. The generalization to more
variables is straightforward.

Something to be noted is that the most probable values .Ox; Oy/, i.e: the values that
maximize f .x; y/, do not necessarily map into values .X.Ox/;Y.Oy// that maximize
f 0.x0; y0/. This issue is also present in the frequentist approach when dealing with
the propagation of asymmetric uncertainties, and will be discussed in Sect. 5.9. Sec-
tion 5.8 will discuss how to propagate errors in the case of parameter transformation
using a linear approximation, and under this simplified assumption, which is not
always a sufficient approximation, one may assume that values that maximize f
map into values that maximize f 0, i.e.: .Ox0; Oy0/ D .X.Ox/;Y.Oy//.
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Chapter 4
Random Numbers and Monte Carlo Methods

4.1 Pseudorandom Numbers

Many computer application, ranging from simulations to video games and 3D-
graphics application, take advantage of computer-generated numeric sequences
having properties very similar to truly random variables. Sequences generated by
computer algorithms through mathematical operations are not really random, having
no intrinsic unpredictability, and are necessarily deterministic and reproducible.
Indeed, it is often a good feature for many application the possibility to reproduce
exactly the same sequence of computer-generated numbers given by a computer
algorithm.

Good algorithms that generate “random” numbers, or better, pseudorandom
numbers, given their reproducibility, must obey, in the limit of large numbers, to
the desired statistical properties of real random variables.

Numerical methods involving the repeated use of computer-generated pseudo-
random numbers are often referred to as Monte Carlo methods, from the name of
the city hosting the famous casino, which exploits the properties of (truly) random
numbers to generate profit.

4.2 Pseudorandom Generators Properties

Good (pseudo)random number generators must be able to generate sequences of
numbers that are statistically independent on previous extractions, though unavoid-
ably each number will be determined mathematically, through the generator’s
algorithm, from the previous numbers.

All numbers in the sequence should be independent and distributed according to
the same PDF P.x/ (independent and identically distributed random variables, or
i.i.d.). Those properties can be written as follows:
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P.xi/ D P.xj/; 8 i; j ; (4.1)

P.xnjxn�m/ D P.xn/; 8 n;m : (4.2)

Example 4.11 – Transition From Regular to “Unpredictable” Sequences

There are several examples of mathematical algorithms that lead to sequences
that are poorly predictable. One example of transition from a “regular” to a
“chaotic” regime is given by the logistic map [1]. The sequence is defined,
starting from an initial value x0, as:

xnC1 D �xn.1 � xn/ : (4.3)

Depending on the value of �, the sequence may have very different possible
behaviors. If the sequence converges to a single asymptotic value x for n ! 1,
we would have:

lim
n!1 xn D x ; (4.4)

where x must satisfy:

x D �x.1 � x/ : (4.5)

Excluding the trivial solution x D 0, Eq. (4.5) leads to the solution x D .1 �
�/=�. This solution is stable for values of � smaller than 3. Above � D 3, the
sequence stably approaches a state where it oscillates between two values x1
and x2 that satisfy the following system of two equations:

x1 D �x2.1 � x2/ ; (4.6)

x2 D �x1.1 � x1/ : (4.7)

For larger values, up to 1C p
6, the sequences oscillates between four values,

and further bifurcations occur for larger values of �, until it achieves a very
complex and poorly predictable behavior. For � D 4 the sequence finally
densely covers the interval 
0; 1Œ. The PDF corresponding to the sequence
with � D 4 can be demonstrated to be a beta distribution with parameters
˛ D ˇ D 0:5, where the beta distribution is defined as:

f .xI˛; ˇ/ D x˛�1.1 � x/ˇ�1
R ˛�1
0 .1 � u/ˇ�1 du

: (4.8)

The behavior of the logistic map for different values of � is shown in Fig. 4.1.
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Fig. 4.1 Logistic map [2]

4.3 Uniform Random Number Generators

The most widely used computer-based pseudorandom number generators are conve-
niently written in such a way to produce sequences of uniformly distributed numbers
ranging from zero to one.1 Starting from uniform random number generators most
of the other distribution of interest can be derived using specific algorithms, some
of which are described in the following.

The period of a random sequence, i.e.: the number of extractions after which the
sequence will repeat itself, should be as high as possible, and anyway higher than
the number of random numbers that will be used in the specific application.

For instance, the function lrand48 [3], which is a standard of C programming
language, is defined according to the following algorithm:

xnC1 D .axn C c/mod m ; (4.9)

where the values of m, a and c are:

m D 248 (4.10)

a D 25214903917D 5DEECE66D hex (4.11)

c D 11 D B hex (4.12)

1In realistic cases of finite numeric precision, one of the extreme values is excluded. It would have
a corresponding zero probability, in the case of infinite precision, but it is not the case with finite
machine precision.
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The sequences obtained from Eq. (4.9) for given initial values x0 are distributed
uniformly between 0 and 248 � 1. This corresponds to sequences of random bits
that can be used to return 32-bits integer numbers or can be mapped into sequences
of floating-point numbers uniformly distributed in Œ0; 1Œ, as done by the C function
drand48. The value x0 is called seed of the random sequence. Choosing different
initial seeds produces different sequences. In this way one can repeat a computer-
simulated experiment using different random sequences each time changing the
initial seed and obtaining different results that simulate the statistical fluctuation
of the simulated experiment.

Similarly to lrand48, the gsl_rng_rand [4] generator of the BSD rand
function uses the same algorithm but with a D 41C64E6D hex, c D 3039 hex and
m D 231. The period of lrand48 is about 248, while gsl_rng_rand has a lower
period of about 231.

A popular random generator that offers good statistical properties is due to
Lüscher [5], implemented by James in the RANLUX generator [6], whose period
is of the order of 10171. RANLUX is now considered relatively slower than other
algorithms, like the L’Ecuyer generator [7], which has a period of 288, or the
Mersenne-Twistor generator [8] which has a period of 219937 � 1 and is relatively
faster than L’Ecuyer’s generator.

4.3.1 Remapping Uniform Random Numbers

Given a value x uniformly distributed in Œ0; 1Œ, it is often convenient to transform it
into a variable x0 uniformly distributed in another interval Œa; bŒ by performing the
following transformation:

x0 D a C x.b � a/ : (4.13)

With this transformation, x D 0 corresponds to x0 D a and x D 1 corresponds to
x0 D b.

4.4 Non Uniform Random Number Generators

Starting from a uniform pseudorandom number generator, it is possible to define
algorithms that generate sequences that have non-uniform distributions.
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4.4.1 Gaussian Generators Using the Central Limit Theorem

We already saw in Chap. 1 that, using the central limit theorem, the sum of N
random variables, each having a finite variance, is distributed, in the limit N ! 1,
according to a Gaussian distribution. For a finite but sufficiently large value of N we
can extract N values x1; � � � ; xN from a uniform random generator and remap them
from Œ0; 1Œ to Œ�p

3;
p
3Œ using Eq. (4.13), so that the average and variance of each

xi are zero and one respectively. Then, we can compute:

x D x1 C � � � C xNp
N

; (4.14)

which has again average equal to zero and variance equal to one. Figure 2.11 shows
the distribution of x for N up to four, giving approximately a Gaussian distribution,
that is necessarily truncated in the range Œ�p

3N;
p
3N
 by construction. This is

anyway not the most effective way to generate approximately Gaussian-distributed
pseudorandom numbers. A better algorithm will be described at the end of this
section.

4.4.2 Non-uniform Distribution From Inversion
of the Cumulative Distribution

If we want to generate a pseudorandom variable x distributed according to a generic
function f .x/, we can build its cumulative distribution (Eq. (2.13)):

F.x/ D
Z x

�1
f .x0/ dx0 : (4.15)

If we can invert the cumulative distribution F.x/, it is possible to demonstrate
that, extracting a random number r uniformly distributed in Œ0; 1Œ, the transformed
variable:

x D F�1.r/ (4.16)

is distributed according to f .x/. In fact, if we write:

r D F.x/ ; (4.17)

we have:

dr D dF

dx
dx D f .x/ dx : (4.18)
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Introducing the differential probability dP, we have:

dP

dx
D f .x/

dP

dr
: (4.19)

Since r is uniformly distributed, we have: dP=dr D 1, hence:

dP

dx
D f .x/ ; (4.20)

which means that x follows the desired PDF. This method only works conveniently
if the cumulative F.x/ can be easily computed and inverted using either analytical
or numerical methods. If not, usually this algorithm may be very slow.

Example 4.12 – Extraction of an Exponential Random Variable

We can use the inversion of the cumulative distribution in order to extract
random numbers x distributed according to an exponential PDF:

f .x/ D �e��x : (4.21)

The cumulative PDF is:

F.x/ D
Z x

0

f .x0/ dx0 D 1� e�x : (4.22)

Inverting F.x/ leads to:

1 � e�x D r ; (4.23)

which translates into:

x D � 1
�

log.1 � r/ : (4.24)

If the extraction of r happens in the interval Œ0; 1Œ, like drand48, r D 1 will
never be extracted, hence the argument of the logarithm will never be equal to
zero, ensuring the numerical validity of Eq. (4.24).
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Example 4.13 – Extraction of a Uniform Point on a Sphere

Assume we want to generate two variables, � and �, distributed in such a
way that the direction described by them in polar coordinates points to a point
uniformly distributed on a sphere. In this case the two-dimensional differential
probability must be uniform per unit of solid angle �:

dP

d�
D dP

sin � d� d�
D k ; (4.25)

where k is a normalization constant such that the PDF integrates to unity over
the entire solid angle, 4� . From Eq. (4.25), the combined two-dimensional
PDF can be factorized into the product of two PDFs, as functions of � and �
(i.e.: � and � are independent):

dP

d� d�
D f .�/g.�/ D k sin � ; (4.26)

where:

f .�/ D dP

d�
D c1 ; (4.27)

g.�/ D dP

d�
D c2 sin � : (4.28)

The constants c1 and c2 ensure the normalization of f .�/ and g.�/. � can be
extracted inverting the cumulative distribution of f .�/ (Eq. (4.16)), and since
g.�/ is uniformly distributed, � can be extracted just remapping the interval
Œ0; 1Œ into Œ0; 2�Œ (Eq. (4.13)), leading to:

� D arccos.1 � 2r1/ 2
0; �
 ; (4.29)

� D 2�r2 2 Œ0; 2�Œ ; (4.30)

where r1 and r2 are extracted as uniformly distributed in Œ0; 1Œ.

4.4.3 Gaussian Numbers Generation

In order to generate Gaussian random numbers, the inversion of the cumulative
distribution would lead to the inversion of an error function, which is not easy
to perform numerically. One possibility is to extract, according to the algorithm
described in the following, pairs of random numbers Gaussian distributed in two
dimensions and use them as independent Gaussian numbers. This is easier to
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perform by moving from cartesian coordinates .x; y/ to polar coordinates .r; �/.
In particular, the radial Gaussian cumulative PDF was already introduced in
Eq. (2.100), and leads, in the simplest case of a normal Gaussian (with average in
.0; 0/ and standard deviations in both coordinates equal to one), to:

P2D.�/ D
Z �

0

e� r2
2 r dr D 1 � e� �2

2 : (4.31)

This leads to the Box Muller transformation [9] from two variables r1 and r2
uniformly distributed in Œ0; 1Œ into two variables z1 and z2 distributed according to a
normal Gaussian:

r D p�2 log r1 (4.32)

� D 2�r2 (4.33)

z1 D r cos� (4.34)

z2 D r sin � (4.35)

A normal Gaussian random number z can be easily transformed into a Gaussian
random number x with a given average � and standard deviation � using the
following transformation:

x D �C �z : (4.36)

More efficient generators for Gaussian random numbers exist. For instance [10]
describes the so-called Ziggurat algorithm.

4.5 Monte Carlo Sampling

There are many cases in which the cumulative distribution of a PDF is not easily
computable and invertible. In those case, other methods allow to generate random
numbers according to a given PDF.

4.5.1 Hit-or-Miss Monte Carlo

A rather general-purpose and simple to implement method to generate random
numbers according to a given PDF is the hit-or-miss Monte Carlo. It assumes we
have a PDF defined in an interval x 2 Œa; bŒ, that is known as a function f .x/, but not
necessarily normalized (i.e.:

R b
a f .x/ dx may be different from one). We also assume
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Fig. 4.2 Sketch of
hit-or-miss Monte Carlo
method

x

f(x)

a b

m
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that we know the maximum value m of f , or at least a value m that is greater or equal
to the maximum of f . The situation is sketched in Fig. 4.2.

The method consist of first extracting a uniform random number x in the interval
Œa; bŒ, and then computing f D f .x/. Then, a random number r is extracted
uniformly in Œ0;mŒ. If r > f (“miss”) we repeat the extraction of x, until r < f
(“hit”). In this case, we accept x as the desired extracted value. In this way,
the probability distribution of the accepted x is our initial (normalized) PDF by
construction. A possible inconvenient of this method is that it rejects a fraction
of extractions equal to the ratio of area under the curve f .x/, and the area of the
rectangle that contains f . The method has an efficiency (i.e.: the fraction of accepted
values of x) equal to:

" D
R b

a f .x/ dx

.b � a/ � m
; (4.37)

which may lead to a suboptimal use of the computing power, in particular if the
shape of f .x/ is very peaked.

Hit-or-miss Monte Carlo can also be applied to multi-dimensional cases. In those
cases, one first extracts a multi-dimensional point Ex D .x1; � � � ; xn/, then accepts or
rejects Ex according to a random extraction r 2 Œ0;mŒ, compared with f .x1; � � � ; xn/.
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Fig. 4.3 Variation of
hit-or-miss Monte Carlo
using the importance
sampling
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4.5.2 Importance Sampling

If the function f is very peaked, the efficiency " of this method (Eq. (4.37)) may
be very low. In those cases the algorithm may be adapted to become more efficient
by identifying in a preliminary stage a partition of the interval Œa; bŒ such that in
each subinterval the function f has a smaller variation than in the overall range.
In each subinterval the maximum of f is estimated. This situation is sketched
in Fig. 4.3. First of all, a subinterval of the partition is randomly chosen with a
probability proportional to its area. Then, the hit-or-miss approach is followed in the
corresponding rectangle. This approach is often referred to as importance sampling.

A possible variation of this method is to use, instead of the aforementioned
partition, an “envelope” for the function f , i.e.: a function g.x/ that is always greater
than f .x/: g.x/ � f .x/; 8x 2 Œa; bŒ, and for which a convenient method to extract x
according to the normalized distribution g.x/ is known.

It’s evident that the efficiency of the importance sampling may be significantly
higher than the “plain” hit-or-miss Monte Carlo if the partition and the correspond-
ing maxima in each subinterval are properly chosen.
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Example 4.14 – Combined Application of Different Monte Carlo
Techniques

We want to find an algorithm to generate a random variable x distributed
according to a PDF:

f .x/ D Ce��x cos2 kx ; (4.38)

where C is a normalization constant, and � and k are two known parameters.
f .x/ describes an oscillating term (cos2 kx) dumped by an exponential term
(e��x).

We can use as “envelope” the function Ce��x, so we first generate a
random number x according to this exponential distribution. Then we apply
an hit-or-miss technique, and we accept or reject x according to a probability
proportional to cos2 kx. The probability distribution, given the two independent
processes, is the product of the exponential envelope times the cosine-squared
term. In summary, the algorithm may proceed as follows:

1. generate r uniformly in Œ0; 1Œ
2. compute x D � 1

�
log.1 � r/.

3. generate s uniformly in Œ0; 1Œ
4. if s > cos2 kx repeat the extraction at the point 2
5. else return x

4.6 Numerical Integration with Monte Carlo Methods

Monte Carlo methods are often used as numerical methods to compute integrals
with the computer. If we use the hit-or-miss method described in Sect. 4.5.1, for
instance, we can estimate the integral

R b
a f .x/ dx from the fraction of the accepted

hits n over the total number of extractions N:

I D
Z b

a
f .x/ dx ' OI D .b � a/ � n

N
: (4.39)

With this approach, n follows a binomial distribution. If we can use the approximate
expression in Eq. (1.40) (see Sect. 1.11.1, n should not be too close to either 0 or N),
we can estimate the error on OI as:

�OI D .b � a/

r
I.1 � I/

N
: (4.40)

Equation 4.40 shows that the error on OI decreases as
p

N. We can apply the same
hit-or-miss method to a multi-dimensional integration problem. In that case, we
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would have the same expression for the error, which decreases as
p

N, regardless
of the number of dimensions d of the problem. Other numerical methods, not based
on random number extractions, may suffer from severe computing time penalties
as the number of dimensions d increases, and this makes Monte Carlo methods
advantageous in cases of high number of dimensions, compared to other non-
random-based techniques.

In the case of hit-or-miss Monte Carlo, anyway, numerical problems may arise
in the algorithm to find the maximum value of the input function in the multi-
dimensional range of interest. Also, partitioning the multi-dimensional integration
range in an optimal way, in case the of importance sampling, can be a non-trivial
problem.
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Chapter 5
Parameter Estimate

This chapter describes how to determine unknown parameters of some probability
distribution by sampling the values of random variables that obey such distribution.
In physics this procedure is applied when measuring parameters of interest by
running repeated experiments.

A typical case is running a particle collider and recording multiple collision
events for further analysis. Theory provides a probability model that predicts
the distribution of the observable quantities our detector is sensitive to. Some
parameters of the theory are unknown, and the measurement of those parameters
of interest is the goal of our experiment.

The outcome of an experiment is related to a probability distribution that results
from the combination of the theoretical model and the effect of the experimental
detector response, since usually the observed distributions of the measured quan-
tities is affected by detector’s finite resolution effects, miscalibrations, presence of
background, etc. The detector response can be described by a probability model that
depends on unknown parameters. Those additional unknown parameters, referred
to as nuisance parameters, arise in such a way in the problem and appear together
with the unknown parameters from theory. Examples of nuisance parameters are
the detector resolution, calibration constants, amount of background, etc. Those
parameters can be, in many cases, determined from experimental data samples.
In some cases, dedicated data samples may be needed (e.g.: data from test beams
in order to determine the calibration constants of a detector, cosmic-ray runs to
determine alignment constants, etc.), or dedicated simulation programs.
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5.1 Measurements and Their Uncertainties

We can determine, or estimate the value of the unknown parameters (either
parameters of interest and nuisance parameters) using the data collected by our
experiment, which lead to an approximate knowledge of those parameters within
some uncertainties.

The procedure to determine parameters from a data sample is also called
best fit, because we determine the parameters that best fit the theoretical model
on the experimental data sample by finding an optimal set of parameter values
(see Sect. 5.5).

The data provided by an experiment consist of measured values of the observable
quantities that constitute our data sample which is a sampling of the PDF deter-
mined by the combination of the theoretical and the instrumental effects.

From the observed data sample, the value of one or more parameters � is inferred,
up to some level of uncertainty, and, as result of the measurement of a parameter � ,
one quotes a central value and uncertainty, denoted usually as:

� D O� ˙ ı� :

Above, ı� represents the error or uncertainty associated to the measurement O� .
The interval Œ O� � ı�; O� C ı�
 is referred to as confidence interval with a probability
value is associated to it. Usually 68 % is implicitly assumed, which corresponds to
an interval of ˙1� for a normal distribution. In some cases, asymmetric positive
and negative uncertainties are taken, so we quote:

� D O�Cı�C

�ı��

;

corresponding to the confidence interval Œ O� � ı�C; O� C ı��
.
The meaning of the error ı� (or the errors ı� and ıC) and of the confidence

interval may be different depending on the statistical approach taken.
As introduced in Sect. 1.1, two main complementary statistical approaches exist

in literature. Those correspond to two different interpretation of the confidence
interval, or the central value and its uncertainty:

• Frequentist approach: for a large fraction, usually by convention 68 % (“one
�”, or alternatively 90 or 95 %), of repeated experiments, in the limit of infinitely
large number of repetitions of the experiment, the unknown true value of � is
contained in the quoted confidence interval Œ O� � ı�; O� C ı�
, where O� and ı�
may vary from one experiment to another, being the result of the measured
data sample in each experiment. This property of the estimated interval is
referred to as statistical coverage. Interval estimates that have a larger or smaller
(frequentist) probability to contain the true value, in this sense, are said to
overcover or undercover, respectively.
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• Bayesian approach: one’s degree of belief that the unknown parameter is
contained in the quoted interval Œ O� � ı�; O� C ı�
 can be quantified with a 68 %
(or 90 or 95 %) probability. The mathematical quantitative definition and the
procedures to quantify the degree of belief under the Bayesian approach has been
discussed in Chap. 3.

Within both the frequentist and the Bayesian approaches there are still some degrees
of arbitrariness in the definition of confidence intervals, as already seen in Sect. 3.4
(central interval, extreme intervals, smallest-length interval, etc.).

The process of determining the estimated values ( O�) and the corresponding uncer-
tainty (ı�) of some unknown parameters from experimental data that correspond
to the sampling of a probability distribution is also called inference. The presence
of a finite uncertainty reflects the statistical fluctuations of the data sample due to
the intrinsic (theoretical) and/or experimental (due to the effect of the detection
instrument) randomness of our observable (see the diagram in Fig. 5.1). The smallest
the amount of fluctuation of data (i.e.: a distribution that concentrates in a small
interval a large probability), the smallest the uncertainty in the determination of the
unknown parameters. Ideally, if the data sample would exhibit no fluctuation and if
our detector would have a perfect resolution, a perfect knowledge of the unknown
parameters would be possible. This case is never present in real experiments, and
every real-life measurement is affected by some level of uncertainty.

Theory Model

data fluctuate according
to the process randomness

Data

Probability

Theory Model

Model parameters are uncertain
due to the finiteness of the 

data sample

Data

Inference

Fig. 5.1 Relation between probability and inference
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5.2 Nuisance Parameters and Systematic Uncertainties

In order to define the PDF describing a data model, in many cases it is necessary to
introduce parameters that are not of direct interest to our problem. For instance,
when determining (“fitting”) the yield of a signal peak, it is sometimes needed
to determine from data other parameters, like the experimental resolution that
gives the peak width, detector efficiencies that are needed to determine the signal
production yield from the measured signal yield, parameters to define the shapes
and amounts of possible backgrounds, and so on. Those parameters are often
referred to as nuisance parameters. In some cases, nuisance parameters can’t be
determined from the same data sample used to measure the parameters of interest
and their estimate should be taken form other measurements. The uncertainty
on their determination, external to the considered fit problem, will reflect into
uncertainties on the estimate of parameters of interest, as we will see in the following
(see Sect. 8.11).

Uncertainties due to the propagation of imperfect knowledge of nuisance param-
eters that can’t be constrained from the same data sample used for the main fit of
the parameters of interest gives raise to systematic uncertainties, while uncertainties
purely related to the fit are referred to as statistical uncertainties.

5.3 Estimators

Determining the estimate of unknown parameters requires the definition of a
mathematical procedures to determine the central values as a function of the
observed data sample. In general, such a function of the data sample that returns
the estimated value of a parameter is called estimator. Estimators can be defined in
practice by more or less complex mathematical formulae or numerical algorithms.
We are interested in estimators that have “good” statistical properties, and such
properties that characterize good estimators will be discussed in Sect. 5.4.

Example 5.15 – A Very Simple Estimator in a Gaussian Case

As first and extremely simplified example, let’s assume a Gaussian distribution
whose standard deviation � is known (e.g.: the resolution of our apparatus),
and whose average � is the unknown parameter of interest. Let’s assume our
data sample consists of a single measurement x which is distributed according
to the Gaussian distribution under consideration. We can define as estimator of
� the function that returns the single value x that has been extracted, i.e.: we
consider as estimate of � the value O� D x.
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If we repeat many times (ideally: an infinite number of times) the exper-
iment, we will have different values of O� D x, distributed according to the
original Gaussian.

In 68.27 % of the experiments, in the limit of an infinite number of
experiments, the fixed and unknown true value� lies in the confidence interval
Œ O� � �; O� C �
, i.e.: � � � < O� < � C � or � 2 Œ O� � �; O� C �
, and in
the remaining 31.73 % of the cases � will lie outside the same interval. This
expresses the coverage of the interval Œ O���; O�C�
 at the 68.27 % confidence
level.

We can quote our estimate � D O� ˙ � , in this sense. ˙� is the error
or uncertainty we assign to the measurement O�, with the frequentist meaning
defined above.

In realistic cases we have a data sample that is more rich than a single mea-
surement, and PDF models more complex than a Gaussian, which we considered
in the Example 5.15. The definition of an estimator may require in general complex
mathematics or in many cases computer algorithms.

5.4 Properties of Estimators

Different estimators may have different statistical properties that makes one or
another estimator more suitable for a specific problem. In the following we will
present some of the main properties of estimators. Section 5.5 will introduced the
maximum-likelihood estimators which have good performances in terms of most of
the properties indicators described in the following.

5.4.1 Consistency

An estimator is said to be consistent if it converges, in probability, to the true
unknown parameter value as the number of measurements n that tends to infinity,
i.e., if:

8" lim
n!1 P.j O�n � � j < "/ D 1 : (5.1)
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5.4.2 Bias

The bias of an estimator is the average deviation of the estimate from its true value:

b.�/ D
D O� � �

E
D
D O�
E

� � : (5.2)

The average is intended as the expected value over an infinitely large number of
repeated experiments.

5.4.3 Minimum Variance Bound and Efficiency

The variance of any consistent estimator is subject to a lower bound due to
Cramér [1] and Rao [2] which is given by:

VŒ O�
 � VCR. O�/ D
�
1C @b. O�/

@�

�2

��
@ ln L.x1;��� ;xnI�/

@�

�2
� : (5.3)

The denominator of Eq. (5.3) is called Fisher information in statistical literature, and
was already introduced in Sect. 3.7 when defining Jeffreys’ priors in the Bayesian
approach.

The ratio of the Cramér–Rao bound to the estimator’s variance is called
estimator’s efficiency:

". O�/ D VCR. O�/
VŒ O�
 : (5.4)

Any consistent estimator O� has efficiency ". O�/ lower or equal to one.

Example 5.16 – Estimators with Variance Below the Cramér–Rao Bound
are Not Consistent

It is possible to find estimators that have variance lower than the Cramér–Rao
bound, but this implies that they are not consistent. Examples can be found by
dropping the hypothesis that the estimator is consistent.

For instance, an estimator of an unknown parameter that gives a constant
value (say zero) as estimate of the parameter, regardless of the data sample
values, has zero variance, but is of course not consistent.

An estimator of this kind is clearly not very useful in practice.
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5.4.4 Robust Estimators

If a sample’s distribution has (hopefully slight) deviations from the hypothetical
theoretical PDF model, some properties of estimators that assume the theoretical
PDF model correctly describes the data may not hold necessarily. The entries in our
data sample that exhibit large deviations from the theoretical PDF are called outliers.
An important property of an estimator, in presence of outliers, is to have a limited
sensitivity to the presence of such data that deviate from the theoretical model. This
property, that can be better quantified, is in general defined as robustness.

An example of robust estimator of the average value of a sample x1; � � � ; xn is the
median Nx, defined in the following way:

Nx D
(

x nC1
2

if n is odd ;
1
2
.x n

2
C x n

2C1/ if n is even :
(5.5)

Clearly, the presence of outliers at the left or right tails of the distribution will not
change significantly the value of the median, if it is dominated by measurements in
the “core” of the distribution, while the usual average (Eq. (1.13)) could be shifted
from the true value more and more as much as the outlier distribution is broader
than the “core” part of the distribution. Trimmed averages, i.e.: averages computed
by removing from the sample a fraction of the rightmost and leftmost data in the
sample is also less sensitive to the presence of outliers.

It is convenient to define the breakdown point as the maximum fraction of
incorrect measurements (i.e. outliers) above which the estimate may grow arbitrarily
large in absolute value. In particular, trimmed averages that remove a fraction f of
the events can be demonstrated to have a breakdown point f , while the median has
a breakdown point of 0:5.

A more detailed discussion of robust estimator is beyond the purpose of this text.
Eadie et al. [3] contains a more extensive discussion of robust estimators.

5.5 Maximum-Likelihood Method

The most frequently used estimate method is based on the construction of the
combined probability distribution of all measurements in our data sample, called
likelihood function, which was already introduced in Sect. 3.3. The central values of
the parameters we want to estimate are obtained by finding the parameter set that
correspond to the maximum value of the likelihood function. This approach gives
the name of maximum-likelihood method to this technique.

Maximum-likelihood fits are very frequently used because of very good statisti-
cal properties according to the indicators discussed in Sect. 5.4.
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The simple example of estimator discussed in the Example 5.15, assuming the
simple case of a Gaussian PDF with unknown average � and known standard
deviation � , where the sample consisted of a a single measurement x obeying this
given Gaussian PDF, is a very simple example of the application of the maximum-
likelihood method.

5.5.1 Likelihood Function

We define the likelihood function as the PDF that characterizes our set of experi-
mental observables, evaluated at the values of those observables that corresponds
to our data sample, for given values of the unknown parameters. If we measure the
values x1; � � � xn of n random variables and our PDF model depends on m unknown
parameters �1; � � � ; �m, we define the likelihood function L as:

L.x1; � � � ; xnI �1; � � � ; �m/ D f .x1; � � � ; xnI �1; � � � ; �m/ ; (5.6)

where f is the (joint) PDF of the random variables x1; � � � xn. As already anticipated
in Sect. 3.3, often, the notation: L.x1; � � � ; xnj�1; � � � ; �m/ is also used, resembling
the notation adopted for conditional probability (see Sect. 1.6).

We can define the maximum-likelihood estimator of the unknown parameters
�1; � � � ; �m the function that returns the values of the parameters for which the
likelihood function, evaluated on the measured sample, is maximum. We implicitly
assume that there is a unique maximum value, otherwise the determination of the
maximum-likelihood estimate is not unique.

If we have N repeated measurements each consisting of the n values of the ran-
dom variables .x1; � � � ; xn/, we can consider the probability density corresponding to
the total sample x D f.x11; � � � ; x1n/; � � � ; .xN

1 ; � � � ; xN
n /g. If we assume that the events

are independent of each other,1 the likelihood function of the sample consisting
of the N events can be written as the product of the PDFs corresponding to the
measurement of each single event, i.e.:

L.xI E�/ D
NY

iD1
f .xi

1; � � � ; xi
nI �1; � � � ; �m/ : (5.7)

1In this case, we will often use the term event with the meaning frequently used in physics, more
than in statistics, i.e.: an event is the collection of measurements of the observable quantities
x1; � � � ; xn which is repeated in one or more experiments. Measurements performed in different
events are assumed to be uncorrelated. In this sense, each sequence of event variables x1i ; � � � ; xN

i ,
for all i D 1; � � � ; n, can be considered a sampling of independent and identically distributed
random variables, or i.i.d., see Sect. 4.2.
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In order to more easily manage the maximization of the likelihood, often the
logarithm of the likelihood function is computed, so that when the product of many
terms appears in the likelihood definition, this is transformed into the sum of the
logarithms of such terms. The logarithm of the likelihood function becomes:

� ln L.xI E�/ D �
NX

iD1
ln f .xi

1; � � � ; xi
nI �1; � � � ; �m/ : (5.8)

5.5.1.1 Numerical Implementations: MINUIT

The maximization of the likelihood function L, or the equivalent—but often more
convenient—minimization of � ln L, can be performed analytically only in the
simplest cases. Most of realistic cases require numerical methods implemented as
computer algorithms. The computer algorithm MINUIT [4] is one of the most widely
used minimization software tool in the field of high-energy and nuclear physics
since the years 1970s, and has been reimplemented from the original fortran version
in C++, as available in the ROOT software toolkit [5].

5.5.2 Extended Likelihood Function

If the number of events N is also a random variable that obeys the distribution
p.NI �1; � � � ; �m/, which may also depend on the m unknown parameters, we can
define the extended likelihood function as:

L D p.NI �1; � � � ; �m/

NY

iD1
f .xi

1; � � � ; xi
nI �1; � � � ; �m/ : (5.9)

In most of the cases of interest in physics, p.NI �1; � � � ; �m/ is a Poisson distribution
whose average � may depend on the m unknown parameters. In this case, we can
write:

L D e��.�1;��� ;�m/�.�1; � � � ; �m/
N

NŠ

NY

iD1
f .xi

1; � � � ; xi
nI �1; � � � ; �m/ : (5.10)

In the case for instance where the PDF is a linear combination of two PDFs, one
for “signal” (Ps), one for “background” (Pb), whose yields, s and b are unknown,
we can write the extended likelihood function as:

L.xiI s; b; �/ D .s C b/ne�.sCb/

nŠ

NY

iD1
.fsPs.xiI �/C fbPb.xiI �// ; (5.11)
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where the fractions of signal and background fs and fb are:

fs D s
sCb ; (5.12)

fb D b
sCb : (5.13)

Replacing Eqs. (5.12) and (5.13) in (5.11), we have:

L.xiI s; b; �/ D .s C b/ne�.sCb/

nŠ

NY

iD1

.sPs.xiI �/C bPb.xiI �//
s C b

(5.14)

D e�.sCb/

nŠ

NY

iD1
.sPs.xiI �/C bPb.xiI �// : (5.15)

Writing the logarithm of the likelihood function we have the more convenient
expression:

� ln L.xiI s; b; �/ D s C b C
nX

iD1
ln.sPs.xiI �/C bPb.xiI �//� ln nŠ : (5.16)

The last term, � ln nŠ, is constant with respect to the unknown parameters and can
be omitted when minimizing the function � ln L.xiI s; b; �/.

An example of extended maximum-likelihood fit of a two-component PDF like
the one illustrated above is shown in Fig. 5.2. The points with the error bars represent
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Fig. 5.2 Example of unbinned extended maximum-likelihood fit of a simulated dataset. The fit
curve is superimposed on the data points as solid blue line
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the data sample, shown as binned histogram for convenience, which is randomly
extracted according to the assumed PDF. The unknown parameters present in are fit
according to the likelihood function in Eq. (5.16) with a PDF modeled as sum of a
Gaussian component (“signal”) and an exponential component (“background”). The
mean and standard deviation of the Gaussian component and the decay parameter
of the exponential component are fit simultaneously with the number of signal and
background events, s and b.

5.5.3 Gaussian Likelihood Functions

Assuming we have n measurements of a variable x whose PDF is a Gaussian with
average � and standard deviation � , we have:

� 2 ln L.xiI�; �/ D
nX

iD1

.xi � �/2
�2

C n.ln 2� C 2 ln �/ : (5.17)

The minimization of �2 ln L.xiI�; �/ can be performed analytically by finding the
zeros of the first derivative with respect to � and �2, and the following maximum-
likelihood estimates for � and �2 can be obtained:

O� D 1

n

nX

iD1
xi ; (5.18)

O�2 D 1

n

nX

iD1
.xi � O�/2 : (5.19)

The maximum-likelihood estimate O�2 is affected by bias (Sect. 5.4.2), in the sense
that its average value deviates from the true �2. The bias, anyway, decreases as
n ! 1. The way to correct the bias of Eq. (5.19) is discussed in the Example 5.18.

5.6 Errors with the Maximum-Likelihood Method

Once we have determined the estimate O� of our parameter of interest, using the
maximum-likelihood method, we have to determine a confidence interval that
corresponds to a coverage of 68.27 %, or “1�”, in most of the cases.

In cases of non-Gaussian PDFs, in the presence of a large number of
measurements that we combined into a single estimate, we can still use a Gaussian
approximation. If we are far from that ideal limit, the result obtained under the
Gaussian assumption may be only an approximation and deviation from the
exact coverage may occur. If we use as PDF model an n-dimensional Gaussian
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(Eq. (2.102)), it is easy to demonstrate that we can obtain the n-dimensional PDF
covariance matrix as the inverse of the matrix of the second-order partial derivatives
of the negative logarithm of the likelihood function, i.e.2:

C�1
ij D �@ ln L.x1; � � � ; xnI �1; � � � ; �m/

@�i @�j
: (5.20)

This covariance matrix gives the n-dimensional confidence contour having the
correct coverage if the PDF model is exactly Gaussian.

Let’s consider the Gaussian likelihood case of Eq. (5.17), from Sect. 5.5.3. In that
case, if we compute the derivative of � ln L with respect to the average parameter
�, we obtain:

1

�2�
D @2.� ln L/

@�2
D n

�2
; (5.21)

which leads to the following error on the estimated average:

�� D �p
n
: (5.22)

This expression coincides with the evaluation of the standard deviation of the
average from Eq. (5.18) using the general formulae from Eqs. (1.14) and (1.15).

Another method frequently used to determine the uncertainty on maximum-
likelihood estimates is to look at the excursion of �2 ln L around the minimum
value (i.e.: the value that maximizes L), and find the interval where �2 ln L increases
by one with respect to its minimum value. This method leads to identical results
of Eq. (5.20) in the Gaussian case, but may lead to different results in the case of
non-Gaussian PDFs. In particular, this approach in general may lead to asymmetric
errors, but better follows the non-local behavior of the likelihood function.3 This
procedure is graphically shown in Fig. 5.3 for the case of a single parameter � .

In more than one dimension the same method can be applied, obtaining an
approximate multidimensional ellipsoid. For instance, the two-dimensional contour
plot shown in Fig. 5.4 shows the values of the parameters of s and b that minimize
Eq. (5.16) (central point) for the sample shown in Fig. 5.2. The approximate ellipse
corresponds to the points for which � ln L.xiI s; b; �/ in Eq. (5.16) increases by two
with respect to its minimum, corresponding to a 1� uncertainty.

2For the users of the program MINUIT, this estimate correspond to call the method
MIGRAD/HESSE.
3Again, for MINUIT users this procedure correspond to the call of the method MINOS.
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Fig. 5.3 Scan of �2 ln L as a function of a parameter � . the error interval is determined looking at
the excursion of �2 ln L around the minimum, at O� , finding the values for which �2 ln L increases
by one unit
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Fig. 5.4 Two-dimensional contour plot showing the 1� error ellipse for the fit parameters s and b
(number of signal and background events) corresponding to the fit in Fig. 5.2

The exact coverage, anyway, is not ensured even in this method where the
excursion of the negative log-likelihood function is evaluated, though usually the
coverage is improved with respect to the parabolic approximation in Eq. (5.20).
Chapter 6 will discuss a more rigorous treatment of uncertainty intervals that ensure
the proper coverage.



94 5 Parameter Estimate

Example 5.17 – Maximum-Likelihood Estimate for an Exponential Dis-
tribution

We want to compute the maximum-likelihood estimate and error for the
parameter � of an exponential PDF:

f .t/ D �e��t ; (5.23)

given n measurements of t: t1; � � � ; tn.
By minimizing analytically the likelihood function, written as the product

of f .t1/ � � � f .tn/, one can easily show that the maximum-likelihood estimate of
�, which is the inverse of the average “lifetime”, � D 1=�, is:

O� D
 
1

n

nX

iD1
ti

!�1
; (5.24)

with an error, using Eq. (5.20), of:

�� D O�=pn : (5.25)

The derivation of this result is left as exercise to the reader.

5.6.1 Properties of Maximum-Likelihood Estimators

Maximum-likelihood estimators can be demonstrated to be consistent. Moreover,
maximum-likelihood estimators may have a bias, but it is possible to demonstrate
that the bias tends to zero as the number of measurements n tends to
infinity. Maximum-likelihood estimators have efficiencies (compared to the
Cramér–Rao bound, from Eq. (5.4)) that asymptotically, for large number
of measurements, tend to one. Hence, maximum-likelihood estimators have,
asymptotically, the lowest possible variance compared to any other estimator.
Finally, maximum-likelihood estimator are invariant under reparameterization.
That is, if we find a maximum of the likelihood in term of some parameters,
in the new parameterization, the transformed parameters also maximize the
likelihood.
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Example 5.18 – Bias of the Maximum-Likelihood Estimate of a Gaussian
Variance

The maximum-likelihood estimate of the variance of Gaussian-variables
average from Eq. (5.19) is given by:

O�2 D 1

n

nX

iD1
.xi � O�/2 : (5.26)

The bias is defined in Eq. (5.2). It can be shown analytically that the expected
value of O�2 is:

˝ O�2˛ D n � 1
n

�2 ; (5.27)

where � is the true variance. Hence, the maximum-likelihood estimate O�2
tends to underestimate the variance, and it has a bias given by:

b O�2 D ˝ O�2˛ � �2 D
�

n � 1
n

� 1

�

�2 D ��
2

n
(5.28)

which decreases with n, as in general expected for a maximum-likelihood
estimate. In particular, an unbiased estimate can be obtained by multiplying the
maximum-likelihood estimate by a correction factor n=.n � 1/, which gives:

O�2unbiased D 1

n � 1

nX

iD1
.xi � O�/2 : (5.29)

5.7 Minimum �2 and Least-Squares Methods

Let’s consider a case in which a number n of measurements .y1 ˙ �1; � � � yn ˙ �n/ is
performed, and each measurement yi ˙ �i corresponds to a value xi of a variable x.
Assume we have a model for the dependence of y on the variable x as follows:

y D f .xI E�/ ; (5.30)

where E� D .�1; � � � ; �m/ is a set of unknown parameters we want to determine. If the
measurements yi are Gaussianly distributed around f .xiI E�/ with standard deviation
equal to �i, we can write the likelihood function for this problem as the product of
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n Gaussian PDFs:

L.EyI E�/ D
nY

iD1

1
q
2��2i

exp

"

� .yi � f .xiI E�//2
2�2i

#

; (5.31)

where Ey D .y1; � � � ; yn/.
Maximizing L.EyI E�/ is equivalent to minimize �2 ln L.EyI E�/:

� 2 ln L.EyI E�/ D
nX

iD1

.yi � f .xiI E�//2
�2i

C
nX

iD1
ln 2��2i : (5.32)

The last term does not depend on the parameters E� , if the uncertainties �i are known
and fixed, hence it is a constant that we can drop when performing the minimization.
So, we can minimize the following quantity corresponding to the first term in
Eq. (5.32):

�2.E�/ D
nX

iD1

.yi � f .xiI E�//2
�2i

: (5.33)

An example of fit performed with the minimum-�2 method is shown in Fig. 5.5.
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Fig. 5.5 Example of minimum-�2 fit of a simulated dataset. The points with the error bars,
assumed resulting from Gaussian PDFs, are used to fit a function model of the type y D f .x/ D
Axe�Bx, where A and B are unknown parameters determined form the fit procedure. The fit curve
is superimposed as solid blue line
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In case the uncertainties �i are all equal, it is possible to minimize the expression:

R2 D
nX

iD1
.yi � f .xiI E�//2 D

nX

iD1
ri : (5.34)

This minimization is referred to as least-squares method.

5.7.1 Linear Regression

In the easiest case of a linear function, the minimum-�2 problem can be solved
analytically. The function f can be written as:

y D f .xI a; b/ D a C bx ; (5.35)

a and b being free parameters. The �2 can then be written as:

�2.a; b/ D
nX

iD1

.yi � a � bxi/
2

�2i
: (5.36)

The analytical minimization can proceed as usual, imposing
@�2.a; b/

@a
D 0 and

@�2.a; b/

@b
D 0, which gives:

Ob D cov.x; y/

VŒx

; (5.37)

Oa D hyi � Ob hxi ; (5.38)

where, introducing the weights wi defined as:

wi D 1=�2iPn
jD1 1=�2j

; (5.39)

we have:

hxi D
nX

iD1
wixi ; (5.40)

hyi D
nX

iD1
wiyi ; (5.41)
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VŒx
 D hxi2 � ˝
x2
˛ D .

nX

iD1
wixi/

2 �
nX

iD1
wix

2
i ; (5.42)

cov.x; y/ D hxyi � hxi hyi D
nX

iD1
wixiyi �

nX

iD1
wixi

nX

iD1
wiyi : (5.43)

The uncertainties on the parameter estimates Oa and Ob can be estimated as described
in Sect. 5.6:

1

�2Oa
D �@

2 ln L

@2a
D 1

2

@2�2

@2a
(5.44)

and similarly:

1

�2Ob
D 1

2

@2�2

@2b
: (5.45)

Hence, we have:

�Oa D
v
u
u
t

 
nX

iD1

1

�i

!�1
; (5.46)

�Ob D
v
u
u
t

 
nX

iD1

x2i
�2i

!�1
: (5.47)

5.7.2 Goodness of Fit

One advantage of the minimum-�2 method is that the expected distribution of O�2,
the minimum �2 value, is known and is given by:

P.�2I n/ D 2�n=2

�.n=2/
�n�2e��2=2 ; (5.48)

where n is the number of degrees of freedom of the problem, i.e.: the number of
measurements n minus the number of fit parameters m. We define the p-value as
P.�2 � O�2/, the probability that �2 is greater or equal to the value O�2 obtained at
the fit minimum. If the data follow the assumed Gaussian distributions, the p-value
is expected to be a random variable uniformly distributed from 0 to 1 (see Sect. 2.3).
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Obtaining a small p-value of the fit could be symptom of a poor description of
the theoretical model y D f .xI E�/. For this reason, the minimum �2 value can be
used as a measurement of the goodness of the fit. Anyway, setting a threshold, say
p-value less than 0.05, to determine whether a fit can be considered acceptable or
not, will always discard on average 5 % of the cases, even if the PDF model correctly
describes the data, due to statistical fluctuations.

Note also that the p-value can not be considered as the probability of the fit
hypothesis to be true. Such probability would only have a meaning in the Bayesian
approach (see Chap. 3), and in that case it would require a different type of
evaluation.

Unlike minimum-�2 fits, in general, for maximum-likelihood fits the value
of �2 ln L for which the likelihood function is maximum does not provide a
measurement of the goodness of the fit. It is possible in some cases to obtain
a goodness-of-fit measurement by finding the ratio of the likelihood functions
evaluated in two hypotheses: the Wilks’ theorem (see Sect. 7.6) ensures that such
ratios, if the likelihood function obeys some regularity conditions, and if the
two hypotheses are nested (see Chap. 7), is asymptotically, for a large number
of repeated measurements, distributed as a �2 distribution (Eq. (5.48)). A more
extensive discussion about the relation between likelihood functions, their ratios and
�2 can be found in [6], and will be also discussed in Sect. 5.10.2 for what concerned
binned fits.

5.8 Error Propagation

Once we have measured with our inference procedure the m parameters �1; � � � ; �m,
in several cases we need to evaluate a new set of parameters, 	1; � � � ; 	k that can
be determined as functions of the measured ones. The uncertainty on the original
parameters reflects in the uncertainty on the new parameter set.

The best option to determine the uncertainties on the new parameters would be
to reparameterize the likelihood problem using the new set of parameters and to
perform again the maximum-likelihood fit in terms of the new parameters. This is
not always possible, in particular when the details of the likelihood problem are not
available, for instance when retrieving a measurement from a published paper.

In those cases, the simplest procedure may be to perform a local linear approxi-
mation of the transformation functions that express the new parameters as a function
of the measured ones. If the errors are sufficiently small, projecting them on the
new variables using the linear approximation, leads to a sufficiently accurate result.
In general, we can express the covariance matrix Hij of the transformed parameters
in terms of the covariance matrix ‚kl of the original parameters with the following
expression:

Hij D
X

k; l

@	i

@�k

@	j

@�l
‚kl ; (5.49)
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Fig. 5.6 Plot of a variable
transformation 	 D 	.�/, and
visualization of the procedure
of error propagation using
local linear approximation

η

θσθ

ση

or, in matrix form:

H D AT‚A ; (5.50)

where:

Aij D @	i

@�j
: (5.51)

This procedure is visualized in the simplest case of a one-dimensional transforma-
tion in Fig. 5.6.

5.8.1 Simple Cases of Error Propagation

If we have to rescale a variable x:

y D ax (5.52)

then the uncertainty squared will become:

�2y D
�

dy

dx

�2
�2x D a2�2x ; (5.53)

hence:

�ax D jaj�x : (5.54)
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If we sum two uncorrelated variables x and y:

z D x C y (5.55)

then the uncertainty squared will become:

�2z D
�

dz

dx

�2
�2x C

�
dz

dy

�2
�2y D �2x C �2y ; (5.56)

hence:

�xCy D
q
�2x C �2y : (5.57)

More in general, also considering a possible correlation term, using Eq. (5.49), one
may obtain:

�xCy D
q
�2x C �2y C 2��x�y : (5.58)

In case of the product of two variables x and y:

z D xy (5.59)

the relative uncertainty add in quadrature, plus a possible correlation term:

�
�xy

xy

�

D
s
��x

x

�2 C
�
�y

y

�2
C 2��x�y

xy
: (5.60)

For the non-linear case of a power law:

y D xn ; (5.61)

one has:
��xn

xn

�
D jnj

��x

x

�
: (5.62)

5.9 Issues with Treatment of Asymmetric Errors

In Sect. 5.6 we observed that maximum-likelihood fits may lead to asymmetric
errors. The propagation of asymmetric errors and the combination of more mea-
surements having asymmetric errors may require special care. If we have two
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measurements: x D OxC�C

x���

x
and y D OyC�C

y���

y
, the naïve extension of the sum in

quadrature of errors, derived in Eq. (5.57), would lead to the (incorrect!) sum in
quadratures of the positive and negative errors:

x C y D .Ox C Oy/C
q

.�
C

x /2C.�C

y /2

�p
.��

x /
2C.��

y /
2
; (5.63)

which has no statistical motivation. One reason for which Eq. (5.63) is incorrect,
is the central limit theorem. In the case of a very large sample, symmetric errors
can be approximated by the standard deviation of the distribution of that sample. In
case of an asymmetric (skew) distribution, asymmetric errors may be related to a
measurement of the skewness (Eq. (1.25)) of the distribution. Adding more random
variables, each characterized by an asymmetric PDF, should lead to a resulting
PDF that approaches a Gaussian more than the original PDFs, hence it should have
more symmetric errors. From Eq. (5.63), instead, the error asymmetry would never
decrease by adding more and more measurements with asymmetric errors.

One statistically correct way to propagate asymmetric errors on quantities (say 	)
that are expressed as functions of some original parameters (say �) is to reformulate
the fit problem in terms of the new parameters, and perform again the fit and error
evaluation for the derived quantities (	). This approach is sometimes not feasible
in the case when measurements with asymmetric errors are taken as result of a
previous measurement (e.g.: from a publication) that do not specify the complete
underlying likelihood model. In those cases, the treatment of asymmetric errors
requires some assumptions on the underlying PDF model which is missing in the
available documentation of the model’s description. Discussions about how to treat
asymmetric errors can be found in [7–9] using a frequentist approach. D’Agostini
[10] also approaches this subject using the Bayesian approach (see Chap. 3). In the
following part of the section the derivation from [9] will be briefly presented as
example.

Imagine that the uncertainty on a parameter x0 may arise from a non-linear
dependence on another parameter x (i.e.: x0 D f .x/) which has a symmetric
uncertainly � .

Figure 5.7 shows a simple case where a random variable x, distributed according
to a Gaussian PDF, is transformed into a variable x0 through a piece-wise linear
transformation, leading to an asymmetric PDF. The two straight-line sections, with
different slopes, join with continuity at the central value of the original PDF. This
leads to a resulting PDF of the transformed variable which is piece-wise Gaussian:
the two half-Gaussians, each corresponding to a 50 % probability, have different
standard deviation parameters, � 0C and � 0�. Such a PDF is also called bifurcated
Gaussian in some literature.

If we have as original measurement: x D Ox ˙ � , this will lead to a resulting

measurement of the transformed variable: x0 D Ox0C� 0

C

�� 0

�

, where � 0C and � 0� depend on
� through factors equal to the two different slopes: � 0C D � � sC and � 0� D � � s�
respectively, as seen from the Fig. 5.7.
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Fig. 5.7 Transformation of a
variable x into a variable x0

through a piece-wise linear
transformation characterized
by two different slopes. If x
obeys a Gaussian PDF with
standard deviation � , x0 obeys
a bifurcated Gaussian, made
of two Gaussian halves
having different standard
deviation parameters, � 0

C

and � 0

�

One consequence of the transformed PDF shape is that the average value of the
transformed variable, hx0i, is different from the most likely value, Ox0. While the
average value of the sum of two variables is equal to the sum of the average values
of the two variables (Eq. (1.19)), this is not the case for the most likely value of the
sum of the two variables.

In fact, using a naïve error treatment, like the one in Eq. (5.63), could even lead
to a bias in the estimate of combined values. In particular, the average value of x0 is:

˝
x0˛ D Ox0 C 1p

2�
.� 0C � � 0�/ ; (5.64)

In that assumed case of a piece-wise linear transformation, we can consider, in
addition to Eq. (5.64), also the corresponding expressions for the variance:

VarŒx0
 D
�
� 0C C � 0�

2

�2
C
�
� 0C � � 0�

2

�2 �

1 � 2

�

�

; (5.65)

and for the unnormalized skewness, defined in Eq. (1.26):

Œx0
 D
D
x03
E

� 3 ˝x0˛
D
x02
E

C 2
˝
x0˛3 (5.66)

D 1

2�

�

2.�3C � �3�/� 3

2
.�C � ��/.�3C C �3�/C 1

�
.�C � ��/3

�

: (5.67)
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The unnormalized skewness that leads to Eq. (5.67) add linearly, like the average

and variance. If we have two variables affected by asymmetric errors, say: x1
C�C

1���

1

and x2
C�C

2���

2
, and assume an underlying piece-wise linear model, as in the case treated

here, we can compute the average, variance and unnormalized skewness for the sum
of the two:

hx1 C x2i D hx1i C hx2i ; (5.68)

VarŒx1 C x2
 D VarŒx1
C VarŒx2
 ; (5.69)

Œx1 C x2
 D Œx1
C Œx2
 ; (5.70)

where the three above quantities for x1 and x2 separately can be computed from
Eqs. (5.64), (5.65) and (5.67). Inverting the relation between hx1 C x2i, VarŒx1 C
x2
 and Œx1 C x2
 and 2x1 C x2, �

C
1C2 and ��

1C2 one can obtain, using numerical

techniques, the correct estimate for x1C2
C�C

1C2

���

1C2
.

Barlow [9] also considers the case of a parabolic dependence and obtains a

procedure to estimate x1C2
C�C

1C2

���

1C2
with this second model.

Any estimate of the sum of two measurements affected by asymmetric errors
requires an assumption of an underlying PDF model, and results may differ for
different assumptions, depending case by case on the numerical values.

5.10 Binned Samples

The maximum-likelihood method discussed in Sect. 5.5 is used to perform param-
eter estimates using the complete set of information present in our measurements
sample. In the case of a very large number of measurement, computing the
likelihood function may become unpractical from the numerical point of view, and
the implementation could require very large computing power.

For this reason, it’s frequently preferred to perform the parameter estimate using
a summary of the sample’s information which is obtained by binning the distribution
of the random variable (or variables) of interest and using as information the number
of entries in each single bin.

In practice, we build an histogram, in one or more variables, of the experimental
distribution. If the sample is composed of independent extractions from a given
random distribution, the number of entries in each bin obeys a Poisson distribution
whose expected number of entries in each bin can be determined from the theoretical
distribution and depends on the unknown parameters one wants to estimate.
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5.10.1 Minimum-�2 Method for Binned Histograms

In the case of a sufficiently large number of entries in each bin, the Poisson
distribution describing the number of entries in each bin can be approximated by a
Gaussian with variance equal to the average number of entries in that bin, according
to what was derived in Sect. 2.9. In this case, the expression for �2 ln L becomes:

� 2 ln L D
X

i

.ni � R xC

i
x�

i
f .xI �1; � � � ; �m/ dx/2

ni
C n ln 2� C

X

i

ln ni ; (5.71)

where Œx�
i ; x

C
i 
 is the interval corresponding to the ith bin. If the binning is

sufficiently fine, we can write:

� 2 ln L D
X

i

.ni � f .xiI �1; � � � ; �m/ ıxi/
2

ni
C n ln 2� C

X

i

ln ni ; (5.72)

where xi is center of the ith bin and ıxi is the bin’s width.
Dropping the terms that are constant with respect to the unknown parameters �j,

and hence are not relevant for the minimization, the maximum-likelihood problem
reduces to the minimization of the following �2:

�2 D
X

i

.ni � �i.�1; � � � ; �m//
2

ni
; (5.73)

where the bin size ıxi has been absorbed in the definition of �i, for simplicity of
notation:

�i.�1; � � � ; �m/ D f .xiI �1; � � � ; �m/ıxi : (5.74)

An alternative approach due to Pearson consists of replacing the denominator with
the “theoretical” expected number of entries �i.

The value of �2 at the minimum can be used, as discussed in Sect. 5.7.2, as
measurement of the goodness of the fit, where in this case the number of degrees of
freedom is the number of bins n minus the number of fit parameters k.

5.10.2 Binned Poissonian Fits

In binned samples in general the Gaussian hypothesis assumed in Sect. 5.10.1 does
not necessarily hold when the number of entries per bin may be small. In the
Poissonian case, valid in general, also for small number of events, the negative
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log-likelihood function that replaces Eq. (5.72) is:

� 2 ln L D �2 ln
Y

i

Poiss.niI�i.�1; � � � ; �m// (5.75)

D �2 ln
Y

i

e��i.�1;��� ;�m/�i.�1; � � � ; �m/
ni

niŠ
: (5.76)

Using the approach proposed in [6], we can divide the likelihood function by it’s
maximum value, which we obtain replacing �i with ni. Hence, we obtain:

�2� D �2 ln
L.niI�i.�1; � � � ; �m//

L.niI ni/
D �2 ln

e��i�i
ni

niŠ

niŠ

e�ni nni
i

(5.77)

D 2
X

i

�

�i.�1; � � � ; �m/ � ni C ni ln

�
ni

�i.�1; � � � ; �m/

��

: (5.78)

From Wilks’ theorem (see Sect. 7.6) the distribution of �2� can be approximated
with the �2 distribution (Eq. (5.48)), hence �2� can be used to determine a p-value
that provides a measure of the goodness of the fit.

In case the Wilks’ theorem hypotheses do not hold, e.g.: insufficiently large
number of measurements, the distribution of �2� for the specific problem can still
be determined by generating a large number of Monte Carlo pseudo-experiments
that reproduce the theoretical PDF, and the p-value can be computed accordingly.
This technique is often called toy Monte Carlo.

5.11 Combining Measurements

The problem of combining two or more measurements of the same unknown
quantity � can be addressed in general building a likelihood function that combines
the two or more experimental samples and contains the same unknown parameter
set. Minimizing the new likelihood gives an estimate of � that combines the
information of the available samples.

This option is not always pursuable, either for intrinsic complexity of the
problem, or because the full original samples are not available, and only the final
results are known, as in the case of combining results available from different
publications.

In the case of Gaussian approximation, as assumed in Sect. 5.10.1, we can use the
minimum �2 method to perform a combination of measurements having different
uncertainties, as seen in the following sections.
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5.11.1 Weighted Average

Imagine we have two measurements of the same quantity x, which are x1 ˙ �1 and
x2 ˙ �2. Assuming a Gaussian distribution for x1 and x2 and no correlation between
the two measurements, we can build a �2 as:

�2 D .x � x1/2

�21
C .x � x2/2

�22
: (5.79)

We can find the value x D Ox that minimizes the �2 by imposing:

0 D @�2

@x
D 2

.Ox � x1/

�21
C 2

.Ox � x2/

�22
(5.80)

which gives:

Ox D
x1
�21

C x2
�22

1

�21
C 1

�22

: (5.81)

The variance of the estimate Ox can be computed using Eq. (5.20):

1

�2Ox
D �@

2 ln L

@x2
D 1

2

@2�2

@x2
D 1

�21
C 1

�22
: (5.82)

Equation (5.81) is called weighted average, and can be generalized for n measure-
ments as:

Ox D
Pn

i1
wixi

Pn
iD1 wi

; (5.83)

where wi D 1=�2i , and in general:

�Ox D
s

1
Pn

iD1 wi
: (5.84)
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5.11.2 �2 in n Dimensions

The �2 definition from Eq. (5.79) can be generalized in the case of n measurements
Ex D .x1; � � � ; xn/ of the parameter E� D .�1; � � � ; �n/, where �i D �i.�1; � � � ; �m/

and the correlation matrix of the measurements .x1; � � � ; xn/ is �ij, as follows:

�2 D
nX

i;jD1
.xi � �i/�

�1
ij .xj � �j/ D .Ex � E�/T� �1.Ex � E�/ (5.85)

D �
x1 � �1; � � � ; xn � �n

	

0

B
@

�11 � � � �1n
:::
: : :

:::

�n1 � � � �nn

1

C
A

�10

@
x1 � �1

� � �
xn � �n

1

A : (5.86)

The �2 can be minimized in order to have the best-fit estimate of the unknown
parameters �1; � � � ; �m. Numerical algorithms are needed for the general case,
analytical minimizations are as usual possible only in the simplest cases.

5.11.3 The Best Linear Unbiased Estimator

Let’s consider the case of two measurements of the same quantity x: x D x1 ˙ �1
and x D x2 ˙ �2, which have a correlation coefficient �. In this case, the �2 can be
written as:

�2 D �
x � x1 x � x2

	
�

�21 ��1�2
��1�2 �22

��1 �
x � x1
x � x2

�

: (5.87)

Following the same procedure used to obtain Eq. (5.81), we can easily obtain:

Ox D x1.�22 � ��1�2/C x2.�21 � ��1�2/

�21 � 2��1�2 C �22
; (5.88)

with the following estimate for the variance:

�2Ox D �21 �
2
2 .1 � �2/

�21 � 2��1�2 C �22
: (5.89)

In the general case of more than two measurement, the minimization of the
�2 is equivalent to finding the best linear unbiased estimate (BLUE), i.e.: the
unbiased linear combination of the measurements Ex D .x1; � � � ; xn/ whose weights
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Ew D .w1; � � � ;wn/ give the lowest variance. If we assume:

Ox D
X

i

wixi D Ex � Ew ; (5.90)

the condition of a null bias implies that:

X

i

wi D 1 : (5.91)

The variance can be expressed as:

�2Ox D EwT� Ew ; (5.92)

where �ij is the covariance matrix of the n measurements. It can be shown [11] that
the weights can be determined according to the following expression:

Ew D � �1Eu
EuT� �1Eu ; (5.93)

where Eu is the vector having all elements equal to the unity: Eu D .1; � � � ; 1/.
The interpretation of Eq. (5.88) becomes more intuitive [12] if we introduce the

common error, defined as:

�C D ��1�2 : (5.94)

Imagine, for instance, that the two measurements are affected by a common
uncertainty, like the knowledge of the integrated luminosity in the case of a cross
section measurement, while the other uncertainties are uncorrelated. In that case, we
could write the two measurements as:

x D x1 ˙ � 0
1 ˙ �C (5.95)

x D x2 ˙ � 0
2 ˙ �C (5.96)

where � 02
1 D �21 � �2C and � 02

2 D �22 � �2C. Equation (5.88) becomes:

Ox D
x1

�21 � �2C
C x2
�22 � �2C

1
�21 � �2C

C 1
�22 � �2C

(5.97)
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with a variance:

�2Ox D 1
1

�21 � �2C
C 1

�22 � �2C
C �2C : (5.98)

Equation (5.97) is equivalent to the weighted average from Eq. (5.81), where the
errors � 02

1 and � 02
2 are used. Equation (5.98) shows that the additional term �C has to

be added in quadrature to the usual error in the case of no correlation.
In general, as can be seen from Eq. (5.88), weights with the BLUE method

can become negative. This leads to the counter-intuitive result that the combined
measurement lies outside the range delimited by the two central values. Also, in
the case when � D �1=�2, the weight of the first measurement is zero, hence the
combined central value is not influenced by x2. Conversely, if � D �2=�1, the central
value is not influenced bye x1.

Example 5.19 – Reusing Multiple Times the Same Measurement Doesn’t
Improve a Combination

Assume to have a single measurement, x ˙ � , and we want to use it twice
to determine again the same quantity. Without considering the correlation
coefficient � D 1, one would expect to reduce the uncertainty � “for free”
by a factor

p
2, which is clearly a wrong answer.

The correct use of Eqs. (5.88) and (5.89) lead, in the limit when � D 1,
to Ox D x ˙ � , i.e.: as expected, no precision is gained by using the same
measurement twice.

5.11.3.1 Iterative Application of the BLUE Method

The BLUE method is unbiased by construction assuming that the true uncertainties
and their correlations are known. Anyway, it can be proven that BLUE combinations
may exhibit a bias if uncertainty estimates are used in place of the true ones, and
in particular if the uncertainty estimates depend on measured values. For instance,
when contributions to the total uncertainty are known as relative uncertainties, the
actual uncertainty estimates are obtained as the product of the relative uncertainties
times the measured central values. An iterative application of the BLUE method can
be implemented in order to mitigate such a bias.

L. Lyons et al. remarked in [13] the limitation of the application of the BLUE
method in the combination of lifetime measurements where uncertainty estimates
O�i of the true unknown uncertainties �i were used, and those estimates had a
dependency on the measured lifetime.
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They also demonstrated that the application of the BLUE method violates, in that
case, the “combination principle”: if the set of measurements is split into a number
of subsets, then the combination is first performed in each subset and finally all
subset combinations are combined into a single combination, this result differs from
the combination of all individual results of the entire set.

L. Lyons et al. recommended to apply iteratively the BLUE method, rescaling
at each iteration the uncertainty estimates according to the central value obtained
with the BLUE method in the previous iteration, until the sequence converges to
a stable result. Lyons et al. showed that the bias of the BLUE estimate is reduced
compared to the standard application of the BLUE method. A more extensive study
of the iterative application of the BLUE method is also available in [14].
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Chapter 6
Confidence Intervals

6.1 Neyman’s Confidence Intervals

Section 5.6 presented approximate methods to determine uncertainties of maximum-
likelihood estimates. Basically either the negative log-likelihood function was
approximated to a parabola at the minimum, corresponding to a Gaussian PDF
approximation, or the excursion of the negative log-likelihood around the minimum
was considered to possibly give asymmetric uncertainties. None of those methods
guarantees an exact coverage of the uncertainty intervals. In many cases the
provided level of approximation is sufficient, but this may not always be the cases,
in particular for measurements with a small number of events or PDF models that
exhibit significant deviation from the Gaussian approximation.

A more rigorous and general treatment of confidence intervals under the
frequentist approach is due to Neyman [1], which will be discussed in the following
in the simplest case of a single parameter.

Let’s consider a variable x distributed according to a PDF which depends on an
unknown parameter � . We have in mind that x could be the value of the estimator of
the parameter � . Neyman’s procedure to determine confidence intervals proceeds in
two steps:

1. the construction of a confidence belt;
2. its inversion to determine the confidence interval.

6.1.1 Construction of the Confidence Belt

As first step, the confidence belt is determined by scanning the parameter space,
varying � within its allowed range. For each fixed value of the parameter � D �0,
the corresponding PDF which describes the distribution of x, f .xj�0/, is known.

© Springer International Publishing Switzerland 2016
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Fig. 6.1 Graphical illustration of Neyman’s belt construction (left) and inversion (right)

According to the PDF f .xj�0/, an interval Œx1.�0/; x2.�0/
 is determined whose
corresponding probability is equal to the specified confidence level, defined as CLD
1 � ˛, usually equal to 68.27 % (1�), 90 or 95 %:

1 � ˛ D
Z x2.�0/

x1.�0/
f .xj�0/ dx : (6.1)

Neyman’s construction of the confidence belt is graphically illustrated in Fig. 6.1,
left.

The choice of x1.�0/ and x2.�0/ has still some arbitrariness, since there are
different possible intervals having the same probability, according to the condition
in Eq. (6.1). The choice of the interval is referred to in literature as ordering rule.

For instance, one can chose an interval centered around the average value of x
corresponding to �0 (denoted as hxi j�0 below), i.e.: an interval:

Œx1.�0/; x2.�0/
 D Œhxi j�0 � ı; hxi j�0 C ı
 ; (6.2)

where ı is determined in order to ensure the coverage condition in Eq. (6.1).
Alternatively, one can chose the interval with equal areas of the PDF “tails” at

the two extreme sides, i.e.: such that:

Z x1.�0/

�1
f .xj�0/dx D ˛

2
and

Z C1

x2.�0/
f .xj�0/dx D ˛

2
: (6.3)

Other possibilities consist of choosing the interval having the smallest size,
or fully asymmetric intervals on either side: Œx1.�0/;C1
 or Œ�1; x2.�0/
. Other
possibilities are also considered in literature. Figure 6.2 shows three of the possible
cases described above.

A special ordering rule was introduced by Feldman and Cousins based on a
likelihood-ratio criterion and will be discussed in Sect. 6.4.
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Fig. 6.2 Three possible choices of ordering rule: central interval (top) and fully asymmetric
intervals (bottom left, right)

Given a choice of the ordering rule, the intervals Œx1.�/; x2.�/
, for all possible
values of � , define the Neyman belt in the space .x; �/ as shown in Fig. 6.1.

6.1.2 Inversion of the Confidence Belt

As second step of the Neyman procedure, given a measurement x D x0, the
confidence interval for � is determined by inverting the Neyman belt (Fig. 6.1, right):
two extreme values �1.x0/ and �2.x0/ are determined as the intersections of the
vertical line at x D x0 with the two boundary curves of the belt.

The interval Œ�1.x0/; �2.x0/
 has, by construction, a coverage equal to the desired
confidence level, 1�˛. This means that, if � is equal to the true value � true, extracting
x D x0 randomly according to the PDF f .xj� true/, � true will be included in the
determined confidence interval Œ�1.x0/; �2.x0/
 in a fraction 1�˛ of the cases, in the
limit of a large number of extractions.
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6.2 Binomial Intervals

In Sect. 1.11.1 the binomial distribution (Eq. (1.35)) was introduced:

P.nI N/ D nŠ

NŠ.N � n/Š
pN.1 � p/N�n : (6.4)

Given an extraction of n, n D On, the parameter p can be estimated as:

Op D On
N
: (6.5)

An approximate estimate of the uncertainty on Op is often obtained by replacing p
with its estimate Op in the expression for the variance from Eq. (1.37):

ıp '
r Op.1 � Op/

N
: (6.6)

This may be justified by the law of large numbers because for n ! 1 Op and p will
coincide. This is clearly not the case in general for finite values of n, and Eq. (6.6)
clearly gives a null error in case either On D 0 or On D N, i.e. for Op D 0 or 1,
respectively.

A general solution to this problem is due to Clopper and Pearson [2], and consists
of finding the interval Œp1; p2
 that gives (at least) the correct coverage.

If the confidence level is 1 � ˛, we can find p1 such that:

P.n � OnjN; p1/ D
NX

nDOn

nŠ

NŠ.N � n/Š
pn
1.1 � p1/

N�n D ˛

2
; (6.7)

and p2 such that:

P.n � OnjN; p2/ D
OnX

nD0

nŠ

NŠ.N � n/Š
pn
2.1� p2/

N�n D ˛

2
: (6.8)

This corresponds, in a discrete case, to the Neyman inversion described in Sect. 6.1.
The presence of a discrete observable quantity, n in this case, does not allow

a continuous variation of the observable and the probability associated to possible
discrete intervals Œn1.p0/; n2.p0/
, corresponding to an assumed parameter value p D
p0, can have again discrete possible values. In the Neyman’s construction, one has
to chose the smallest interval Œn1; n2
, consistently with the adopted ordering rule,
that has at least the desired coverage. In this way, the confidence interval Œp1; p2

determined by the inversion procedure for the parameter p could overcover, i.e.:
may have a corresponding probability larger than the desired 1 � ˛. In this sense,
the interval is said to be conservative.
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Another case of a discrete application of the Neyman belt inversion in a
Poissonian problem can be found in Sect. 8.6.

Example 6.20 – Application of the Clopper–Pearson Method

As exercise, we compute the 90 % CL interval in case of a measurement On D N
with the Clopper–Pearson method.

We need to determine the values p1 and p2 such that Eqs. (6.7) and (6.8)
hold. In this case, those give, considering that ˛ D 0:10:

P.n � NjN; p1/ D NŠ

NŠ 0Š
pN
1 .1 � p1/

0 D pN
1 D 0:05 ;

P.n � NjN; p2/ D 1 :

So, for p2 we should consider the largest allowed value p2 D 1:0, since the
probability P.n � 10j10; p2/ is always equal to one. The first equation can be
inverted and gives:

p1 D expŒln.0:05/=N
 :

For instance, for N D 10 we have p1 D 0:741, and the confidence interval is
Œ0:74; 1:00
, which has not a null size, as would have been the case using the
approximated expression in Eq. (6.6).

Symmetrically, the Clopper–Pearson evaluation of the confidence interval
for On D 0 gives Œ0:00; 0:26
 in the case N D 10.

6.3 The “Flip-Flopping” Problem

In order to determine confidence intervals, a consistent choice of the ordering rule
has to be adopted. Feldman and Cousins demonstrated [3] that the ordering rule
choice must not depend on the outcome of our measurement, otherwise the quoted
confidence interval or upper limit could not correspond to the correct confidence
level (i.e.: do not respect the coverage).

In some cases, experiments searching for a rare signal decide to quote their final
result in different possible ways, switching from a central interval to an upper limit,
depending on the outcome of the measurement. A typical choice is to:

• quote an upper limit if the measured signal yield is not larger than at least three
times its uncertainty;

• quote instead the central value with its uncertainty if the measured signal exceeds
three times its uncertainty.
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This “3�” significance criterion will be discussed in more details later, see
Sect. 8.2 for a more general definition of significance level.

This problem is sometimes referred to in literature as flip-flopping, and can be
illustrated in a simple example [3]. Imagine a model where a random variable x
obeys a Gaussian distribution with a fixed and known standard deviation � , for
simplicity we can take � D 1, and an unknown average � which is bound to
be greater or equal to zero. This is the case of a signal yield, or cross section
measurement.

The quoted central value must always be greater than or equal to zero, given the
assumed constraint. Imagine we decide to quote, as measured value for �, zero if
the significance, defined as x=� , is less than 3� , otherwise we quote the measured
value x:

� D
n x if x=� � 3

0 if x=� < 3
; (6.9)

As confidence interval, given the measurement of x, we could decide to quote
a central value if x=� � 3 with a symmetric error: ˙� at the 68.27 % CL, or
˙1:645� at 90 % CL, and instead, we may quote an upper limit xup, i.e.: the
confidence interval Œ0; xup
, if x=� < 3. The upper limit on � corresponds to
� < xup D x C 1:282 at 90 % CL, given the corresponding area under a Gaussian
PDF.

In summary, the quoted confidence interval at 90 % CL is:

Œ�1; �2
 D
n
Œx � 1:645; x C 1:645
 if x=� � 3

Œ0; x C 1:282
 if x=� < 3
; (6.10)

The situation is shown in Fig. 6.3.

Fig. 6.3 Illustration of the flip-flopping problem. The plot shows the quoted central value of � as
a function of the measured x (dashed line), and the 90 % confidence interval corresponding to a
choice to quote a central interval for x=� � 3 and an upper limit for x=� < 3
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The choice to switch from a central interval to a fully asymmetric interval (upper
limit) based on the observation of x produces an incorrect coverage: looking at
Fig. 6.3, depending on the value of �, the interval Œx1; x2
 obtained by crossing
the confidence belt by an horizontal line, one may have cases where the coverage
decreases from 90 to 85 %, which is lower than the desired CL (purple line in
Fig. 6.3). Next Sect. 6.4, presents the method due to Feldman and Cousins to
preserve consistently the coverage for this example without incurring the flip-
flopping problem.

6.4 The Unified Feldman–Cousins Approach

In order to avoid the flip-flopping problem and to ensure the correct coverage, the
ordering rule proposed by Feldman and Cousins [3] provides a Neyman confidence
belt, as defined in Sect. 6.1, that smoothly changes from a central or quasi-central
interval to an upper limit in the case of low observed signal yield.

The ordering rule is based on the likelihood ratio that will be further discussed
in Sect. 7.3: given a value �0 of the unknown parameter � , the chosen interval of
the variable x used for the Neyman-belt construction is defined by the ratio of two
PDFs of x, one under the hypothesis that � is equal to the considered fixed value �0,
the other under the hypothesis that � is equal to the maximum-likelihood estimate
value �best.x/ corresponding to the given measurement x. The likelihood ratio must
be greater than a constant k˛ whose value depends on the chosen confidence level
1 � ˛. In a formula:

�.xj�0/ D f .xj�0/
f .xj�best.x//

> k˛ : (6.11)

The constant k˛ should be taken such that the integral of the PDF evaluated in the
range corresponding to �.xj�0/ > k˛ is equal to 1�˛. Hence, the confidence interval
R˛ for a given value � D �0 is given by:

R˛.�0/ D fx W �.xj�0/ > k˛g ; (6.12)

and the constant k˛ must be chosen in such a way that:

Z

R˛

f .xj�0/ dx D 1 � ˛ : (6.13)

This case is illustrated in Fig. 6.4.
Feldman and Cousins computed the confidence interval for the simple Gaussian

case discussed in Sect. 6.3. The value for� D �best.x/ that maximizes the likelihood
function, given x and under the constraint � � 0, is:

�best.x/ D max.x; 0/ : (6.14)
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Fig. 6.4 Ordering rule in the
Feldman–Cousins approach,
based on the likelihood ratio
�.xj�0/ D
f .xj�0/=f .xj�best.x//

x

f(x|θ )

1−α

f(x|θ )0 0

f(x|θ    (x))best

kα

The PDF for x using the maximum-likelihood estimate for � becomes:

f .xj�best.x// D
n 1p

2�
if x � 0

1p
2�

e�x2=2 if x < 0
: (6.15)

The likelihood ratio in Eq. (6.11) can be written in this case as:

�.xj�/ D f .xj�/
f .xj�best.x//

D
n exp.�.x � �/2=2 if x � 0

exp.x� � �2=2/ if x < 0
: (6.16)

The interval Œx1.�0/; x2.�0/
, for a given � D �0, can be found numerically using
the equation �.xj�/ > k˛ and imposing the desired confidence level 1 � ˛ from
Eq. (6.13).

The results are shown in Fig. 6.5, and can be compared with Fig. 6.3. Using
the Feldman–Cousins approach, for large values of x one gets the usual symmetric
confidence interval. As x moves towards lower values, the interval becomes more
and more asymmetric, and at some point it becomes fully asymmetric (i.e.: Œ0; �up
),
determining an upper limit�up. For negative values of x the result is always an upper
limit avoiding unphysical values with negative values of �. As seen, this approach
smoothly changes from a central interval to an upper limit, yet ensuring the correct
required (90 % in this case) coverage.

More cases treated using the Feldman–Cousins approach will be presented in
Chap. 8.

The application of the Feldman–Cousins method requires, in most of the cases,
numerical treatment, even for simple PDF models, like the Gaussian case discussed
above, because it requires the inversion of the integral in Eq. (6.13). The procedure
requires to scan the parameter space, and in case of complex model may be very
CPU intensive. For this reason, other methods are often preferred to the Feldman–
Cousins for such complex cases.
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Fig. 6.5 Neyman confidence belt constructed using the Feldman–Cousins ordering
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Chapter 7
Hypothesis Tests

7.1 Introduction to Hypothesis Tests

A key task in most of physics measurements is to discriminate between two or more
hypotheses on the basis of the observed experimental data.

A typical example in physics is the identification of a particle type (e.g.: as a
muon vs pion) on the basis of the measurement of a number of discriminating
variables provided by a particle-identification detector (e.g.: the depth of penetration
in an iron absorber, the energy release in scintillator crystals or measurements from
a Cherenkov detector, etc.).

Another example is to determine whether a sample of events is composed of
background only or it contains a mixture of background plus signal events. This
may allows to ascertain the presence of a new signal, which may lead to a discovery.

This problem in statistics is known as hypothesis test, and methods have been
developed to assign an observation, which consists of the measurements of specific
discriminating variables, to one of two or more hypothetical models, considering
the predicted probability distributions of the observed quantities under the different
possible assumptions.

In statistical literature when two hypotheses are present, these are called null
hypothesis, H0, and alternative hypothesis, H1.

Assume that the observed data sample consists of the measurement of a number
n of variables, Ex D .x1; � � � ; xn/ randomly distributed according to some probability
density function, which is in general different under the hypotheses H0 and H1. A
measurement of whether the observed data sample better agrees with H0 or rather
with H1 can be given by the value of a function of the measured sample Ex, t D t.Ex/,
called test statistic, whose PDF under the considered hypotheses can be derived
from the (joint) PDF of the observable quantities Ex.

© Springer International Publishing Switzerland 2016
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t

f(t)
signal

background

tcut

Fig. 7.1 Probability distribution functions for a discriminating variable t.x/ D x which has two
different PDFs for the signal (red) and background (yellow) hypotheses under test

One simple example is to use a single variable x which has discriminating power
between two hypotheses, say signal = “muon” versus background = “pion”, as
shown in Fig. 7.1. A good “separation” of the two cases can be achieved if the
PDFs of x under the hypotheses H1 = signal and H0 = background are appreciably
different.

On the basis of the observed value Ox of the discriminating variable x, a simple
test statistics can be defined as the measured value itself:

Ot D t.Ox/ D Ox : (7.1)

A selection requirement (in physics jargon sometimes called cut) can be defined
by identifying a particle as a muon if Ot � tcut or as a pion if Ot > tcut, where the value
tcut is chosen a priori.

Not all real muons will be correctly identified as a muon according to this
criterion, as well as not all real pions will be correctly identified as pions. The
expected fraction of selected signal particles (muons) is usually called signal
selection efficiency and the expected fraction of selected background particles
(pions) is called misidentification probability.

Misidentified particles constitute a background to positively identified signal
particles. Applying the required selection (cut), in this case t � tcut, on a data
sample made of different detected particles, each providing a measurements of
x, the selected data sample will be enriched of signal, reducing the fraction of
background in the selected data sample with respect to the original unselected
sample. The sample will be actually enriched if the selection efficiency is larger
than the misidentification probability, which is the case considering the shapes of
the PDFs in Fig. 7.1 and the chosen selection cut.
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Fig. 7.2 Signal efficiency versus background misidentification probability

Statistical literature defines the significance level ˛ as the probability to reject the
hypothesis H1 if it is true. The case of rejecting H1 if true is called error of the first
kind. In our example, this means selecting a particle as a pion in case it is a muon.
Hence the selection efficiency for the signal corresponds to 1 � ˛.

The probability ˇ to reject the hypothesis H0 if it is true (error of the second
kind) is the misidentification probability, i.e.: the probability to incorrectly identify
a pion as a muon, in our case.

Varying the value of the selection cut tcut different values of selection efficiency
and misidentification probability (and the corresponding values of ˛ and ˇ) are
determined. A typical curve representing the signal efficiency versus the misidentifi-
cation probability obtained by varying the selection requirement is shown in Fig. 7.2.
A good selection should have a low misidentification probability corresponding to a
high selection efficiency. But clearly the background rejection can’t be perfect (i.e.:
the misidentification probability can’t drop to zero) if the distributions f .xjH0/ and
f .xjH1/ overlap, as in Fig. 7.2.

More complex examples of cut-based selections involve multiple variables,
where selection requirements in multiple dimensions can be defined as regions in the
discriminating variables space. Events are accepted as “signal” or as “background”
if they fall inside or outside the selection region. Finding an optimal selection in
multiple dimensions is usually not a trivial task. Two simple examples of selections
with very different performances in terms of efficiency and misidentification
probability are shown on Fig. 7.3.
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Fig. 7.3 Examples of two-dimensional selections of a signal (blue dots) against a background (red
dots). A linear cut is chosen on the left plot, while a box cut is chosen on the right plot

7.2 Fisher’s Linear Discriminant

A discriminator in more dimensions that uses a linear combination of n discriminat-
ing variables is due to Fisher [1]. The method aims at finding an hyperplane in the
n-dimensional space which gives the best expected separation between two random
variables sets whose PDFs in the multivariate space are known.

The criterion consists of maximizing the distance of the means of the two
PDFs when projected on the axis perpendicular to the selection hyperplane, while
minimizing the variance within each class, defined below. More quantitatively, given
a direction vector Ew, if we project the two samples along the direction Ew, being
�1 and �2 the averages and �1 and �2 the standard deviations of the two PDF
projections, the Fisher discriminant is defined as:

J.Ew/ D .�1 � �2/2
�21 C �22

: (7.2)

The numerator of Eq. (7.2) can be written as:

�1 � �2 D EwT .Em1 � Em2/ ; (7.3)

where Em1 and Em2 are the averages in n dimensions of the two PDFs. Moreover, we
can write the square of Eq. (7.3) as:

.�1 � �2/
2 D EwT.Em1 � Em2/.Em1 � Em2/

T Ew D EwTSB Ew ; (7.4)
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where we have defined the between classes scatter matrix SB as:

SB D .Em1 � Em2/.Em1 � Em2/
T : (7.5)

The projections of the two n � n covariance matrices S1 and S2 give:

�21 D EwT S1 Ew ; (7.6)

�22 D EwT S2 Ew ; (7.7)

from which the denominator of Eq. (7.2) becomes:

�21 C �22 D EwT.S1 C S2/Ew D EwTSW Ew ; (7.8)

where we have defined the within classes scatter matrix SW as:

SW D S1 C S2 : (7.9)

The Fisher’s discriminant from Eq. (7.2) can be rewritten as:

J.Ew/ D .EwT. Em1 � Em2//
2

EwT.S1 C S2/Ew D EwTSB Ew
EwTSW Ew : (7.10)

The problem of finding the vector Ew that maximizes J.Ew/ can be solved by
performing the derivatives of J.Ew/ with respect to the components wi of Ew. It
can also be demonstrated that the problem is equivalent to solve the eigenvalues
equation:

SB Ew D �SW Ew ; (7.11)

i.e.:

SW
�1SB Ew D �Ew ; (7.12)

which leads to the solution:

Ew D SW
�1SB. Em1 � Em2/ : (7.13)

A practical way to find the Fisher’s discriminant is to provide two training
samples that approximate the two PDFs by generating with a Monte Carlo technique
(see Chap. 4) a very large number of random extractions of the n discriminating
variables for each of the two PDFs. The averages and covariance matrices can be
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determined from the Monte Carlo samples and Eq. (7.13) can be applied numerically
to find the direction Ew that maximizes Fisher’s discriminant.

7.3 The Neyman–Pearson Lemma

The performance of a selection criterion can be considered optimal if it achieves the
smallest misidentification probability for a desired value of the selection efficiency.

A test statistic that ensures the optimal performance in this sense is provided
by the Neyman–Pearson lemma [2]. According to this lemma, such test statistic
is defined as the ratio of the likelihood functions evaluated for the observed data
sample Ex under the two hypotheses H1 and H0:

�.Ex/ D L.ExjH1/

L.ExjH0/
: (7.14)

For a fixed signal efficiency " D 1 � ˛ the selection that corresponds to the lowest
possible misidentification probability ˇ is given by:

�.Ex/ D L.ExjH1/

L.ExjH0/
� k˛ ; (7.15)

where the value of the “cut” k˛ should be set in order to achieve the required value
of ˛. This corresponds to chose a point in the curve shown in Fig. 7.2 such that
" D 1 � ˛ corresponds to a required value.

If the multidimensional PDFs that characterize our discrimination problem are
known, the Neyman–Pearson lemma provides a procedure to implement a selection
that achieves the optimal performances.

In many realistic cases it is not easy to determine the correct model for the
multidimensional PDFs, and approximated solutions may be adopted. Numerical
methods and algorithms exist to find selections in the variable space that have
performances in terms of efficiency and misidentification probability close to the
optimal limit given by the Neyman–Pearson lemma. Some of those algorithms
achieve great complexity.

Among such methods some of the most frequently used ones in High Energy
Physics are Artificial Neural Networks and Boosted Decision Trees, which are
covered in this text. An introduction to Artificial Neural Network can be found in
[3], while an introduction to Boosted Decision Trees is available in [4].
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7.4 Likelihood Ratio Discriminant

If the n variables x1; � � � ; xn that characterize our problem are independent, the
likelihood function can be factorized into the product of one-dimensional marginal
PDFs:

�.x1; � � � ; xn/ D L.x1; � � � ; xnjH1/

L.x1; � � � ; xkjH0/
D
Qn

jD1 fj.xjjH1/
Qn

jD1 fj.xijH0/
: (7.16)

This allows in many cases to simplify the computation of the likelihood ratio and to
easily obtain the optimal selection according to the Neyman–Pearson lemma.

Even if it is not possible to factorize the PDFs into the product of one-
dimensional marginal PDFs, i.e.: the variables are not independent, the test statistic
inspired by Eq. (7.16) can be used as discriminant using the marginal PDFs fj for the
individual variables:

�.x1; � � � ; xn/ D
Qn

jD1 fj.xjjH1/
Qn

jD1 fj.xijH0/
: (7.17)

In case the PDFs cannot be exactly factorized, anyway, the test statistic defined
in Eq. (7.17) will differ from the exact likelihood ratio in Eq. (7.14) and hence it
will correspond to worse performances in term of ˛ and ˇ compared with the best
possible values provided by the Neyman–Pearson lemma.

In some cases, anyway, the simplicity of this method can justify its application in
spite of the suboptimal performances. Indeed, the marginal PDFs fj can be simply
obtained using Monte Carlo training samples with a large number of entries that
allow to produce histograms corresponding to the distribution of the individual
variables xj that, to a good approximation, reproduce the marginal PDFs.

Some numerical applications implement this factorized likelihood-ratio tech-
nique after applying proper variable transformation in order to reduce or eliminate
the variables’ correlation. This mitigates the decrease of performance compared
with the Neyman–Pearson limit, but does not necessarily allow to reach the optimal
performances, because uncorrelated variables are not necessarily independent (see
for instance the Example 2.6).

7.5 Kolmogorov–Smirnov Test

A test due to Kolmogorov [5], Smirnov [6] and Chakravarti [7] can be used to assess
the hypothesis that a data sample is compatible with a given distribution.

Assume to have a sample x1; � � � ; xn, ordered by increasing values of x that we
want to compare with a distribution f .x/, which is assumed to be a continuous
function.
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The discrete cumulative distribution of the sample can be defined as:

Fn.x/ D 1

n

nX

iD1
�.x � xi/ ; (7.18)

where the function � is defined as:

�.x/ D


1 if x � 0

0 if x < 0
: (7.19)

The distribution Fn.x/ can be compared to the cumulative distribution of f .x/
defined as (Eq. 2.13):

F.x/ D
Z x

�1
f .x0/ dx0 : (7.20)

The maximum distance between the two cumulative distributions Fn.x/ and F.x/
is used to quantify the agreement of the data sample x1; � � � ; xn with f .x/:

Dn D sup
x

jFx.x/� F.x/j : (7.21)

The definition of Fn.x/, F.x/ and Dn is visualized in Fig. 7.4.
For large n, Dn converges to zero in probability. The distribution of the test

statistic K D p
nDn, if the null hypothesis (the sample x1; � � � ; xn is distributed

x 

x1 x2 xn 

1

0

Dn 

F (x)

F n(x)

Fig. 7.4 Graphical representation of the Kolmogorov–Smirnov test



7.6 Wilks’ Theorem 131

according to f .x/) is true, does not depend on the distribution f .x/, and the
probability that K is smaller or equal to a given value k is given by Marsaglia et al.
[8]:

P.k � k/ D 1 � 2

1X

iD1
.�1/i�1e�i2k2 D

p
2�

k

1X

iD1
e� .2i�1/2�2

8k2 : (7.22)

It’s important to notice that Kolmogorov–Smirnov is a non-parametric test, i.e.: if
some parameters of the distribution f .x/ are determined by the sample x1; � � � ; xn

than the test cannot be applied.
A pragmatic solution to this problem in case parameters of f .x/ have been

estimated from the sample x1; � � � ; xn is to still use the test statistic k, but not to rely
on Eq. (7.22) and determine the distribution of k for the specific problem empirically
by using a toy Monte Carlo generation. This is implemented, for instance, as
optional method in the package root [9].

The Kolmogorov–Smirnov test can also be used to compare two samples, say
x1; � � � ; xn and y1; � � � ; ym, and asses the hypothesis that both come from the same
distribution. In this case, the maximum distance:

Dn;m D sup
x

jFn.x/� Fm.y/j (7.23)

asymptotically converges to zero as n and m are sufficiently large, and the following
test statistic asymptotically follows a Kolmogorov distribution in Eq. (7.22):

r
nm

n C m
Dn;m : (7.24)

Alternative tests to Kolmogorov–Smirnov are due to Stephens [10], Anderson
and Darling [11], Cramér [12] and von Mises [13].

7.6 Wilks’ Theorem

When a large number of measurements is available, Wilks’ theorem allows to find
an approximate asymptotic expression for a test statistic based on a likelihood ratio
inspired by the Neyman–Pearson lemma (Eq. 7.14).

Let’s assume that two hypotheses H1 and H0 can be defined in terms of a set of
parameters E� D .�1; � � � ; �m/ that appear in the definition of the likelihood function:
the condition that H1 is true can be expressed as E� 2 ‚1, while the condition that H0

is true is equivalent to E� 2 ‚0. Let’s also assume that‚0 � ‚1 (nested hypotheses).
Wilks’ theorem [14] ensures, assuming some regularity conditions of the likelihood
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function, that the quantity:

�2r D �2 ln
supE�2‚1

QN
iD1 L.ExiI E�/

supE�2‚0
QN

iD1 L.ExiI E�/
; (7.25)

corresponding to the observed data sample .Ex1; � � � ; ExN/, has a distribution that can
be approximated for N ! 1, if H0 is true, with a �2 distribution having a number
of degrees of freedom equal to the difference between the dimensionality of the set
‚1 and the dimensionality of the set ‚0.

As a more specific example, let’s assume that we separate the parameter set
into one parameter of interest � and the remaining parameters, which are taken
as nuisance parameters (see Sect. 5.2), E� D .�1; � � � ; �m/. For instance, � may be
the ratio of signal cross section to it’s theoretical value (signal strength), and � D 1

corresponds to a signal cross section equal to the theory prediction.
If we take as H0 the hypothesis � D �0, while H1 is the hypothesis that � may

have any possible value greater or equal to zero, Wilks’ theorem ensures that:

�2r .�0/ D �2 ln
supE�

QN
iD1 L.ExiI�0; E�/

sup
�;E�
QN

iD1 L.ExiI�; E�/
(7.26)

is asymptotically distributed as a �2 with k degrees of freedom.
The denominator, sup

�;E�
QN

iD1 L.ExiI�; E�/, is the likelihood evaluated at the

maximum-likelihood point, i.e.: at the value of the parameters � D O� and E� D OE�
that maximize the likelihood function:

NY

iD1
L.ExiI O�; OE�/ :

In the numerator, only the nuisance parameters E� are fit and � is fixed to the
constant value � D �0. If the values of E� that maximize the likelihood function for

a fixed � D �0 are E� D OOE�.�0/, then Eq. (7.26) can be written as:

�2r .�0/ D L.Exj�; OOE�.�0//
L.Exj O�; OE�/

: (7.27)

This test statistic is called in literature profile likelihood and will be used later in
Sect. 8.12 to determine upper limits.
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7.7 Likelihood Ratio in the Search for a New Signal

In the previous section we considered the following likelihood function for a set of
observations .Ex1; � � � ; ExN/ with a set of parameters E� :

L.Ex1; � � � ; ExN I E�/ D
NY

iD1
f .ExiI E�/ : (7.28)

Two hypotheses H1 and H0 are represented as two possible sets of values ‚1 and
‚0 of the parameters E� D .�1; � � � ; �m/ that characterize the PDFs.

Usually we want to use the number of events N as information in the likelihood
definition, hence we use the extended likelihood function (see Sect. 5.5.2) multiply-
ing Eq. (7.28) by a Poissonian factor corresponding to the probability to observe a
number of events N:

L.Ex1; � � � ; ExN I E�/ D e��.E�/�.E�/N
NŠ

NY

iD1
f .ExiI E�/ : (7.29)

In the Poissonian term the expected number of event � may also depend on
the parameters E� : � D �.E�/. Typically, we want to discriminate between two
hypotheses, which are the presence of only background events in our sample, i.e.:
� D b, against the presence of both signal and background, i.e.: � D �s C b.
Here we have introduced the multiplier �, called signal strength, assuming that the
expected signal yield from theory is s and we consider all possible values of the
expected signal yield, given by �s, by varying � while keeping s constant at the
value predicted from theory. The signal strength � is widely used in data analyses
performed at the Large Hadron Collider.

The hypothesis H0 corresponding to the presence of background only is equiva-
lent to � D 0, while the hypothesis H1 corresponding to the presence of signal plus
background allows any non-null positive value of �.

The PDF f .ExiI E�/ can be written as superposition of two components, one PDF
for the signal and another for the background, weighted by the expected signal and
background fractions, respectively:

f .ExI E�/ D �s

�s C b
fs.ExI E�/C b

�s C b
fb.ExI E�/ : (7.30)

In this case the extended likelihood function from Eq. (7.29) becomes:

LsCb.Ex1; � � � ; ExMI�; E�/ D e�.�s.E�/Cb.E�//

NŠ

NY

iD1

�
�sfs.ExiI E�/C bfb.ExiI E�/

�
: (7.31)
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Note that also s an b may depend on the unknown parameters E� :

s D s.E�/ ; (7.32)

b D b.E�/ : (7.33)

For instance in a search for the Higgs boson the theoretical cross section may depend
on the Higgs boson’s mass, as well as the PDF for the signal fs, which represents a
peak centered around the Higgs boson’s mass.

Under the hypothesis H0, i.e.: � D 0 (background only), the likelihood function
can be written as:

Lb.Ex1; � � � ; ExN I E�/ D e�b.E�/

NŠ

NY

iD1

�
bfb.ExiI E�/

�
: (7.34)

The term 1=NŠ disappears when performing the likelihood ratio in Eq. (7.14), which
becomes:

�.�; E�/ D LsCb.Ex1; � � � ; ExN I�; E�/
Lb.Ex1; � � � ; ExN I E�/

D e�.�s.E�/Cb.E�//

e�b.E�/

NY

iD1

�sfs.ExiI E�/C bfb.ExiI E�/
bfb.ExiI E�/

D e��s.E�/
NY

iD1

 
�sfs.ExiI E�/
bfb.ExiI E�/

C 1

!

:

(7.35)

Moving to the negative logarithm of the likelihood function, we have:

� ln�.�; �/ D �s.E�/�
NX

iD1
ln

 
�sfs.ExiI E�/
bfb.ExiI E�/

C 1

!

: (7.36)

In the case of a simple event counting, where the likelihood function only
accounts for the Poissonian probability term, assuming that the expected signal and
background yields depend on the unknown parameters E� , the likelihood function
only depends on the number of observed event N, and the likelihood ratio which
defines the test statistic is:

�.E�/ D LsCb.NI E�/
Lb.NI E�/

; (7.37)
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where LsCb and Lb are Poissonian probabilities for N corresponding to expected
average of �s C b and b respectively. More explicitly �.E�/ can be written as:

�.E�/ D
e�.�s.E�/Cb.E�//

�
�s.E�/C b.E�/

�N

NŠ

NŠ

e�b.E�/b.E�/N
D

D e��s.E�/
 
�s.E�/
b.E�/

C 1

!N

:

(7.38)

Moving to the negative logarithm the above expression becomes:

� ln�.E�/ D �s.E�/� N ln

 
�s.E�/
b.E�/

C 1

!

; (7.39)

which is a simplified version of Eq. (7.36) where the terms fs and fb have been
dropped.

These results will be used to determine upper limits to s in the search for a new
signal, as will be seen in Chap. 8. In particular, this derivation will be very useful
for the determination of the upper limits using the modified frequentist approach, or
CLs, as discussed in Sect. 8.10.
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Chapter 8
Upper Limits

8.1 Searches for New Phenomena: Discovery and Upper
Limits

The goal of many experiments is to search for new physics phenomena. If an
experiment provides a convincing measurement of a new signal, the result should
be published claiming a discovery. If the outcome is not sufficiently convincing, the
publication can anyway quote an upper limit to the “intensity” of the new signal,
which usually allow to exclude parameter sets of a new theory.

In order to give a quantitative measure of how “convincing” the result of an
experiment is, there are different possible approached. Using Bayesian statistics
(Chap. 3), the posterior probability, given the experiment’s measurement and a
subjective prior, can quantify the degree of belief that the new signal hypothesis
is true. In particular, when comparing two hypotheses, in this case the presence or
absence of signal, the Bayes factor (see Sect. 3.5) can be used to quantify how strong
the evidence for a new signal is against the background-only hypothesis.

With the frequentist approach, prior probabilities, that introduce a degree of
subjectiveness, are not allowed, and the achieved significance level, defined quanti-
tatively below in Sect. 8.2, is used to claim a discovery. The significance measures
the probability that, in case of presence of background only, a statistical fluctuation
in data might have produced by chance the observed features that are interpreted as
a new signal.

As in other cases analyzed above, anyway, the interpretation of a discovery in the
Bayesian and frequentist approaches are very different, as will be discussed in the
following.

In case no convincing new signal is observed, in many cases it is nonetheless
interesting to quote as result of the search for the new phenomena the upper limit
on the expected yield of the hypothetical new signal. From upper limits to the signal
yield often it is possible to indirectly derive limits on the properties of the new signal
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that influence the signal yield, such as the mass of a new particle, if it is related to
the theoretical cross section, etc.

The determination of upper limits is in many cases a complex task and the
computation frequently requires numerical algorithms. Several methods are adopted
in High Energy Physics and are documented in literature to determine upper limits.
The interpretation of the obtained limits can be, even conceptually, very different,
depending on the adopted method.

This chapter will introduce the concept of significance and will present the most
popular methods to set upper limits in High Energy Physics discussing their main
benefits and limitations. The interpretation of upper limits under the frequentist and
Bayesian approaches will be discussed, devoting special attention to the so-called
modified frequentist approach, which is a popular method in High Energy Physics
that is neither a purely frequentist nor a Bayesian method.

8.2 Claiming a Discovery

8.2.1 The p-Value

Given an observed data sample, claiming the discovery of a new signal requires
to determine that the sample is sufficiently inconsistent with the hypothesis that
only background is present in the data. A test statistic can be used to measure how
consistent or inconsistent the observation is with the hypothesis of the presence of
background only.

A quantitative measurement of the inconsistency with the background-only
hypothesis is given by the significance, defined from the probability p (p-value)
that the considered test statistics t assumes a value greater or equal to the observed
one in the case of pure background fluctuation. We have implicitly assumed that
large values of t corresponds to a more signal-like sample. The p-value has by
construction (see the end of Sect. 2.3) a uniform distribution between 0 and 1 for
the background-only hypothesis and tends to have small values in the presence of a
signal.

If the number of observed events is adopted as test statistics (event counting
experiment), the p-value can be determined as the probability to count a number of
events equal or greater than the observed one assuming the presence of no signal
and the expected background level. In this cases the test statistics and the p-value
may assume discrete values and the distribution of the p-value is only approximately
uniform.
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Example 8.21 – p-Value for a Poissonian Counting

Figure 8.1 shows a Poisson distribution corresponding to an expected number
of events (background) of 4.5. In case the observed number of events is 8, the
p-value is equal to the probability to observe 8 or more events, i.e.: it is given
by:

p D
1X

nD8
Pois.nI 4:4/ D 1 � e�4:5

7X

nD0

4:5n

nŠ
:

Performing the computation explicitly, a p-value of 0.087 can be determined.

n
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)ν
P

(n
|

0
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 8) = 0.087≥P(n

 = b = 4.5)νP(n | 

Fig. 8.1 Poisson distribution in the case of a null signal and an expected background of b D 4:5.
The probability corresponding to n � 8 (red area) is 0.087, and gives a p-value assuming the event
counting as test statistics

8.2.2 Significance

Instead of quoting the p-value, publications often preferred to quote the equivalent
number of standard deviations that correspond to an area p under the rightmost tail
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Table 8.1 Significances
expressed as “Z�” and
corresponding p-values in a
number of typical cases

Z (� ) p

1.00 1:59 � 10�1

1.28 1:00 � 10�1

1.64 5:00 � 10�2

2.00 2:28� 10�2

2.32 1:00 � 10�2

3.00 1:35 � 10�3

3.09 1:00 � 10�3

3.71 1:00 � 10�4

4.00 3:17 � 10�5

5.00 2:87� 10�7

6.00 9:87 � 10�10

of a normal distribution. So, one quotes a “Z�” significance corresponding to a
given p-value by using the following transformation (see Eq. (2.26)):

p D
Z 1

Z

1p
2�

e�x2=2dx D 1 �ˆ.Z/ D ˆ.�Z/ D 1

2

�

1 � erf

�
Zp
2

��

: (8.1)

By convention in literature one claims the “observation” of the signal under
investigation if the significance is at least 3� (Z D 3), which corresponds to a
probability of background fluctuation (p-value) of 1:35 � 10�3. One claims the
“evidence of” the signal (discovery) in case the significance is at least 5� (Z D 5),
corresponding to a p-value of 2:87 � 10�7. Table 8.1 shows a number of typical
significance values expressed as “Z�” and their corresponding p-values.

8.2.3 Significance and Discovery

Determining the significance, anyway, is only part of the process that leads to a
discovery, in the scientific method. Quoting from [1]:

It should be emphasized that in an actual scientific context, rejecting the background-only
hypothesis in a statistical sense is only part of discovering a new phenomenon. One’s degree
of belief that a new process is present will depend in general on other factors as well, such as
the plausibility of the new signal hypothesis and the degree to which it can describe the data.
Here, however, we only consider the task of determining the p-value of the background-only
hypothesis; if it is found below a specified threshold, we regard this as “discovery”.

In order to evaluate the “plausibility of a new signal” and other factors that
give confidence in a discovery, the physicist’s judgement cannot, of course, be
replaced by the statistical evaluation only. In this sense, we can say that a Bayesian
interpretation of the final result is somehow implicitly assumed.
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8.3 Excluding a Signal Hypothesis

For the purpose of excluding a signal hypothesis, usually the requirement applied in
terms of p-value is much milder than for a discovery. Instead of requiring a p-value
of 2:87 � 10�7 or less (the “5�” criterion), upper limits for a signal exclusion are
set requiring p < 0:05, corresponding to a 95 % confidence level (CL) or p < 0:10,
corresponding to a 90 % CL.

In the case of signal exclusion, p indicates the probability of a signal underfluc-
tuation, i.e.: the null hypothesis and alternative hypothesis are inverted with respect
to the case of a discovery.

8.4 Significance and Parameter Estimates Using Likelihood
Ratio

In Sect. 7.7 the following test statistic was introduced in order to achieve the benefits
of the Wilks’ theorem (see Sect. 7.6):

�.�; E�/ D LsCb.Ex1; � � � ; ExN I�; E�/
Lb.Ex1; � � � ; ExN I E�/

: (8.2)

In the case of a single parameter of interest � (i.e.: no extra parameter � is
relevant, or equivalently we may set the number of extra parameters to zero: m D 0),
it is possible to plot � ln�.�/ as a function of �, and the presence of a minimum at
� D O� is an indication of the possible presence of a signal having a signal strength
� equal to O� within some uncertainty.

In order to determine the significance of the measured signal yield, we can
apply Wilks’ theorem, since we have nested conditions, if the likelihood function is
sufficiently regular. In this case, the distribution of �2 ln�. O�/ can be approximated
by a �2 distribution with one degrees of freedom, and the square root of its value at
the minimum gives an approximate estimate of the significance Z:

Z D
p

�2 ln�. O�/ : (8.3)

More in general, in case of a parameter of interest � , e.g.: the mass of the new
particle that produced the signal yield �s.�/, the same procedure may be applied
and the value � ln�.�/ can be plotted as a function of � . The same consideration
may be done for what concerns the approximate significance evaluation as Z Dp�2 ln�max as a function of the unknown parameter � .

This significance is called local significance, in the sense that it corresponds to
a fixed value of the parameter � . In Sect. 8.14 the interpretation of significance in
the case of parameter estimates from data will be further discussed, and it will be
more clear that the estimate of the local significance at a fixed value of a measured
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parameter may suffer from a systematic overestimate (so called: look-elsewhere
effect).

If the background PDF does not depend on � (for instance, if � is the mass of
an unknown particle), Lb.ExI �/ also does not depend on � and the likelihood ratio
�.�/ is equal, up to a multiplicative factor, to the likelihood LsCb.ExI �/. Hence, the
maximum-likelihood estimate of � , � D O� , can also be determined by minimizing
�2 ln�.�/ and the error on � can be determined as usual for maximum-likelihood
estimates from the shape of �2 ln�.�/ around its minimum, finding its intersection
with an horizontal line at �2 ln�. O�/C 1.

In addition, unlike the likelihood estimate, where the value of the likelihood
function at the minimum does not provide any relevant information, the value of
�2 ln�.�/ at the minimum gives an approximate estimate of the significance Z
thanks to the Wilks’ theorem, as remarked above. This makes the use of likelihood
ratio estimators interesting also for parameter estimate, not only to determine upper
limits.

Combining the likelihood ratios of several measurements can be performed by
multiplying the likelihood functions of individual channels to produce a combined
likelihood function. In this way, combining a first measurement that has strong
sensitivity to the signal with a second measurement that has low sensitivity gives, as
combined test statistic, the product of likelihood ratios � from both measurements.
Since for the second measurement the s C b and b hypothesis give similar values
of the likelihood functions, given that the sensitivity to the signal of the second
measurement is low, the likelihood ratio of the second additional measurement is
close to one. Hence, the combined test statistics (the product of the two) does not
differ much from one given by the first measurement only, and the corresponding
sensitivity will not be worsened by the presence of the second measurement.

8.4.1 Significance Evaluation with Toy Monte Carlo

A better estimate of the significance may be achieved adopting the test statistics
�2 ln� generating a large number of pseudoexperiment (toy Monte Carlo) repre-
senting randomly extracted samples that assume the presence of no signal (� D 0)
in order to obtain the expected distribution of �2 ln�.

The distribution of the generated �2 ln� can be used together with the observed
value of � D O� to determine the p-value which is the probability that � is less or
equal to the observed � D O�:

p D PsCb.�.�/ � O�/ ; (8.4)

equal to the fraction of generated pseudoexperiments for which �.�/ � O�.
Note that, in order to assess large values of the significance, the number of

generated toy Monte Carlo samples required to achieve a sufficient precision may
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be very large because the required p-value is very small. Remember that a p-value
for a 5� evidence is (Table 8.1) 2:87 � 10�7, hence, in order to determine it with
sufficient precision the number of toy samples may be as large as 	 109.

8.5 Definitions of Upper Limits

In the frequentist approach the procedure to set an upper limit is a special case of
determination of the confidence interval (see Sect. 6.1) for the unknown signal yield
s, or alternatively the signal strength �.

In order to determine an upper limit instead of a central interval, the choice of
the interval with the desired confidence level (90 % or 95 %, usually) should be fully
asymmetric, becoming s 2 Œ0; supŒ. When the outcome of an experiment is an upper
limit, one usually quotes:

s < sup at 95% C:L .or 90% CL/ :

If the Bayesian approach is adopted, the interpretation of an upper limit sup is
different and the interval s 2 Œ0; supŒ has to be interpreted as credible interval,
meaning that its corresponding posterior probability is equal to the CL which is
equal to 1 � ˛.

8.6 Poissonian Counting Experiments

A simple case, which is anyway realistic for may application, is a counting
experiment where the number of observed event is the only information considered.
The selected event sample contains a mixture of events due to signal and background
processes.

The expected total number of events is s C b where s and b are the expected
number of signal and background events, respectively. Assuming the expected
background b is known (e.g.: it could be estimated from theory or from a control
data sample), the main unknown parameter of the problem is s, which could be equal
to zero in case the signal is not present (null hypothesis). The likelihood function in
the case of such a counting experiment is:

L.nI s; b/ D .s C b/n

nŠ
e�.sCb/ ; (8.5)

where n is the observed number of events.
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8.6.1 Simplified Significance Evaluation for Counting
Experiments

In case we use as single information the number of observed events n that we want to
compare with an expected number of background events b, if b is sufficiently large
and known with negligible uncertainty, the distribution of the number of events,
assuming that background only is present in the data (s D 0), can be approximated
to a Gaussian with average b and standard deviation equal to

p
b. The observed

number of events n will be on average equal to b. An excess, quantified as s D n�b,
should be compared with the expected standard deviation

p
b, and the significance

can be approximately evaluated as:

Z D sp
b
: (8.6)

In case the expected background yield b comes from an estimate which has a
non-negligible uncertainty �b, Eq. (8.6) can be modified as follows:

Z D s
q

b C �2b

: (8.7)

The above expressions clearly can only be applied in the particular case presented
above, and have no general validity.

8.7 Bayesian Approach

The easiest treatment of a counting experiment, at least from the technical point of
view, can be done under the Bayesian approach. The Bayesian posterior PDF for s
is given by:

P.sjn/ D L.nI s/�.s/
R1
0

L.nI s0/�.s0/ ds0 : (8.8)

The upper limit sup can be computed requiring that the posterior probability
corresponding to the interval Œ0; supŒ is equal to CL, or equivalently that the
probability corresponding to Œsup;1Œ is ˛ D 1 � CL:

˛ D 1 � CL D
Z 1

sup
P.sjn/�.s/ ds D

R1
sup L.nI s/�.s/ ds
R1
0

L.nI s/�.s/ ds
: (8.9)
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Apart from the technical aspects related to the computation of the integrals and
the already mentioned arbitrariness in the choice of the prior �.s/ (see Sect. 3.6),
the above expression poses no particular problem.

8.7.1 Bayesian Upper Limits for Poissonian Counting

In the simplest case of negligible background, b D 0 and assuming a uniform prior
for s, the posterior PDF for s has the same expression as the Poissonian probability
itself, as it was demonstrated in the Example 3.10:

P.sjn/ D sne�s

nŠ
: (8.10)

In the case of no observed events, i.e.: n D 0, we have:

P.sj0/ D e�s ; (8.11)

and:

˛ D 1 � CL D
Z 1

sup
e�s ds D e�sup

; (8.12)

which gives:

sup D � ln.˛/ : (8.13)

For ˛ D 0:05 (95 % CL) and ˛ D 0:10 (90 % CL), we can set the following upper
limits:

sup D 3:00 at 95% CL ; (8.14)

sup D 2:30 at 90% CL : (8.15)

The general case of a possible expected background b ¤ 0 was treated by
Helene [2], and Eq. (8.9) becomes:

˛ D e�sup

nX

mD0

.sup C b/m

mŠ
nX

mD0

bm

mŠ

: (8.16)
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Table 8.2 Upper limits in
presence of negligible
background evaluated under
the Bayesian approach for
different number of observed
events n

1� ˛ D 90% 1� ˛ D 95%

n sup sup

0 2:30 3:00

1 3:89 4:74

2 5:32 6:30

3 6:68 7:75

4 7:99 9:15

5 9:27 10:51

6 10:53 11:84

7 11:77 13:15

8 12:99 14:43

9 14:21 15:71

10 15:41 19:96

The above expression can be inverted numerically to determine sup for given ˛, n
and b. In the case of no background (b D 0) Eq. (8.16) becomes:

˛ D e�sup
nX

mD0

sup m

mŠ
; (8.17)

which gives Eq. (8.12) for n D 0.
The corresponding upper limits in case of no background for different number

of observed events n are reported in Table 8.2. For different number of observed
events n and different expected background b, the upper limits derived in [2] at 90
and 95 % CL are shown in Fig. 8.2.

8.7.2 Limitations of the Bayesian Approach

The derivation of Bayesian upper limits presented above assumes a uniform prior
on the expected signal yield. Assuming a different prior distribution would result
in different upper limits. In general, there is no unique criterion to chose a specific
prior PDF to model the complete lack of knowledge about a variable, like in this
case the signal yield, as it was already discussed in Sect. 3.6. In case of search for
new signals, sometimes the signal yield is related to other parameters of the theory
(e.g.: the mass of unknown particles, or specific coupling constants). In that case,
should one chose a uniform prior for the signal yield or a uniform prior for the
theory parameters? The choice is not obvious and no prescription may be provided
from first principles.

A possible approach is to chose more prior PDFs that reasonably model one’s
ignorance about the unknown parameters and to verify that the obtained upper limit
is not too sensitive to the choice of the prior.
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Fig. 8.2 Upper limits at the
90 % CL (top) and 95 % CL
(bottom) for Poissonian
process using the Bayesian
approach as a function of the
expected background b and
for number of observed
events n from n D 0 to
n D 10
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8.8 Frequentist Upper Limits

Frequentist upper limits can be computed rigorously by inverting the Neyman belt
(see Sect. 6.1). In cases where the confidence interval is fully asymmetric, i.e.: it has
the form Œ0; supŒ, the result may be quoted as:

s < sup ;
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at the given confidence level. In order to better interpret the upper limits obtained
from the Neyman belt inversion in the general case, a simple example of a counting
experiment will be analyzed first, similarly to what was considered in Sect. 8.7.1
under the Bayesian approach.

8.8.1 The Counting Experiment Case

Let’s assume an experiment counts a number n of selected events when expecting
b events from background and s from signal. Let’s also assume for simplicity, as in
Sect. 8.7.1, that the expected background is negligible: b ' 0. The probability to
observe n events when we expect s events is given by a Poisson distribution:

P.nI s/ D e�ssn

nŠ
: (8.18)

We can set an upper limit on the expected signal yield s by excluding the values of
s for which the probability to observe n events or less (p-value) is below the value
˛ D 1 � CL. For n D 0 we have:

P.0I s/ D e�s ; (8.19)

and the p-value is equal to e�s. Setting p > ˛ D 1 � CL allows values of the
expected signal yield s that satisfy:

p D s�s > ˛ D 1 � CL : (8.20)

The above relation can be inverted, and gives:

s < � ln˛ D sup ; (8.21)

which, for ˛ D 5% or ˛ D 10% gives:

s < 3:00 at 95% CL; (8.22)

s < 2:30 at 90% CL: (8.23)

Those results coincide accidentally with the results obtained under the Bayesian
approach.

The coincidence of the values of limits computed under the Bayesian and
frequentist approaches for this simplified but commonly used case may lead to
confusion. There is no intrinsic reason for which limits evaluated under the two
approaches should coincide, and in general, with very few exceptions, like in
this case, Bayesian and frequentist limits don’t coincide numerically. Moreover,
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Fig. 8.3 Graphical
illustration of Neyman’s belt
construction for upper limits
determination
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regardless of their numerical coincidence like in this case, the interpretation of
Bayesian and frequentist limits is very different, as already discussed several times.

8.8.2 Upper Limits from Neyman’s Confidence Intervals

In Sect. 6.1 Neyman’s confidence intervals construction was presented. Upper or
lower limits on an unknown parameter � can be determined using fully asymmetric
intervals for the observed quantity x. In particular, assuming that the Neyman belt
is monotonically increasing, the choice of intervals 
x1.�0/;C1Œ for x leads to a
confidence interval Œ0; �.x0/Œ for � which corresponds to the upper limit:

� < �up D �.x0/ : (8.24)

This case is illustrated in Fig. 8.3, which is the equivalent of Fig. 6.1 when adopting
a fully asymmetric interval.

8.8.3 Frequentist Upper Limits on Discrete Variables

In the case of a discrete observed variable n, like for a Poissonian counting
experiment, when constructing the Neyman’s belt it’s not always possible to find
an interval fn1; : : : ; nkg that has the exact desired coverage because of the intrinsic
discreteness of the problem. The only possibility in such cases is to take the
smallest interval having a probability greater or equal to the desired CL. The upper
limit determined in those cases is conservative, i.e. the procedure ensures that the
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Fig. 8.4 Poisson distribution in the case of a signal s D 4 and b D 0. The white bins show the
smallest possible fully asymmetric confidence interval (f2; 3; 4; � � � g in this case) that gives at least
the coverage of 1� ˛ D 90%

probability that the true value s lies within the determined confidence interval Œs1; s2

is greater or equal to CL D 1 � ˛ (overcoverage).

Figure 8.4 shows an example of Poisson distribution corresponding to the case
with s D 4 and b D 0. Using a fully asymmetric interval as ordering rule, the
interval f2; 3; � � � g of the discrete variable n corresponds to a probability P.n � 2/ D
1�P.0/�P.1/D 0:9084, and is the smallest interval which has a probability greeter
or equal to a desired CL of 0.90: the interval f3; 4; � � � g would have a probability
P.n � 3/ less than 90 %, while enlarging the interval to f1; 2; � � � g would produce a
probability P.n � 1/ larger than P.n � 2/.

Given an observation of n events, we could set the upper limit sup such that:

sup D minPn
mD0 P.mIs/<˛

.s/ : (8.25)

In the simplest case where n D 0, we have:

sup D min
P.0Is/<˛.s/ D min

e�s<˛
.s/ D � ln˛ ; (8.26)

hence, again we find the same result that was derived in Sect. 8.8.1 with a simplified
approach:

sup D � ln.˛/ : (8.27)
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This leads, for ˛ D 0:05 (95 % CL) or ˛ D 0:1 (90 % CL),

sup D 2:00 at 95%CL ; (8.28)

sup D 2:30 at 90%CL : (8.29)

From the purely frequentist point of view, anyway, this result suffers from the
flip-flopping problem discussed in Sect. 6.3: if we decide a priori to quote an upper
limit as our final result the procedure to chose a fully asymmetric interval in the
Neyman’s construction leads to the correct overage. But if we choose to switch
from fully asymmetric to central interval in case we observe a significant signal,
this would lead to an incorrect coverage.

8.8.4 Feldman–Cousins Upper Limits for Counting
Experiments

The Feldman–Cousins (FC) approach (see Sect. 6.4) may be a solution for this case.
In the Poissonian counting case, the 90 % confidence belt obtained with the FC

approach is shown in Fig. 8.5 for the case in which b D 3. The results in the case
of no background (b D 0) are reported in Table 8.3 for different values of the
number of observed events n. Figure 8.6 shows the value of the 90 % CL upper limit
computed using the FC approach as a function of the expected background b for
different values of n.

Fig. 8.5 90 % Confidence
belt for a Poissonian process
using Feldman–Cousins
ordering, in the case of b D 3
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Table 8.3 Upper and lower
limits in presence of
negligible background
(b D 0) obtained using the
Feldman–Cousins approach

1� ˛ D 90% 1� ˛ D 95%

n slo sup sup slo

0 0:00 2:44 0:00 3:09

1 0:11 4:36 0:05 5:14

2 0:53 5:91 0:36 6:72

3 1:10 7:42 0:82 8:25

4 1:47 8:60 1:37 9:76

5 1:84 9:99 1:84 11:26

6 2:21 11:47 2:21 12:75

7 3:56 12:53 2:58 13:81

8 3:96 13:99 2:94 15:29

9 4:36 15:30 4:36 16:77

10 5:50 16:50 4:75 17:82

Fig. 8.6 Upper limits at
90 % confidence belt for
Poissonian process using
Feldman–Cousins ordering as
a function of the expected
background b and for number
of observed events n from 0
to 10
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Comparing Table 8.3 with Table 8.2, which reports the Bayesian results, FC
upper limits are in general numerically larger than Bayesian limits. In particular,
for the case n D 0, the upper limit increases from 2.30 to 2.44 for a 90 % CL and
from 3.00 to 3.09 for a 95 % CL. Anyway, as remarked before, the interpretation of
frequentist and Bayesian limits is very different, and the numerical comparison of
those upper limits should not lead to any specific interpretation.

A peculiar feature of FC upper limits is that, for n D 0, a larger expected
background b corresponds to a more stringent, i.e.: lower, upper limit, as can be
seen in Fig. 8.6 (lowest curve). This feature is absent in Bayesian limits that do not
depend on the expected background b for n D 0 (see Fig. 8.2).
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This dependence of upper limits on the expected amount of background is
somewhat counterintuitive: imagine two experiments (say A and B) performing a
search for a rare signal designed to achieve a very low background level (say 0.01
and 0.1 events for A and B, respectively). If both measure zero counts, which is for
both the most likely outcome, the experiment that achieves the most stringent limit
is the one which has the highest expected background level (B in this case), i.e.: the
one which has the worse expected performances (0.1 expected events for B, vs 0.01
for A).

The Particle Data Group published in their review [3] the following sentence
about the interpretation of frequentist upper limits, in particular for what concerns
the difficulty to interpret a more stringent limit for an experiment with worse
expected background, in the case of no event observed (n D 0):

The intervals constructed according to the unified [Feldman Cousins] procedure for a
Poisson variable n consisting of signal and background have the property that for n D 0

observed events, the upper limit decreases for increasing expected background. This is
counter-intuitive, since it is known that if n D 0 for the experiment in question, then
no background was observed, and therefore one may argue that the expected background
should not be relevant. The extent to which one should regard this feature as a drawback is
a subject of some controversy.

This feature of frequentist limits is often considered unpleasant by physicists.
The need to agree on a common procedure to determine upper limits, mainly
triggered by the need to combine the results of the four LEP experiments on Higgs
boson search [4], led to the proposal of a new method that modifies the purely
frequentist approach, as will be discussed in the following Section. This comes to
some extent from a generalization of the attempt performed by G. Zech discussed
in Sect. 8.9 below.

8.9 Can Frequentist and Bayesian Upper Limits Be
“Unified”?

The coincidence of Bayesian and frequentist upper limits in the simplest event
counting case motivated an effort attempted by Zech [5] to conciliate the two
approaches, namely the limits obtained by Helene in [2] and the frequentist
approach.

In order to determine the probability distribution of the number of events from
the sum of two Poissonian processes with s and b expected number of events from
signal and background, respectively, one can write, using Eq. (2.49), the probability
distribution for the total observed number of events n as:

P.nI s; b/ D
nX

nbD0

n�nbX

nsD0
P.nbI b/P.nsI s/ : (8.30)



154 8 Upper Limits

Zech proposed to modify the first term of Eq. (8.30), P.nbI b/, to take into account
that the observation of n events should put a constraint on the possible values of nb,
which can only range from 0 to n. In this way, Zech attempted to replace P.nbI b/
with:

P0.nbI b/ D P.nbI b/=
nX

n0

bD0
P.n0

bI b/ : (8.31)

This modification leads to the same result obtained by Helene in Eq. (8.16), which
apparently indicates a possible convergence of Bayesian and frequentist approaches.

This approach was later criticized by Highland and Cousins [6] who demon-
strated that the modification introduced by Eq. (8.31) produced an incorrect cov-
erage, and Zech himself admitted the non rigorous application of the frequentist
approach [7].

This attempt could not demonstrate a way to conciliate the Bayesian and
frequentist approaches, which, as said, have completely different interpretations.
Anyway, Zech’s intuition anticipated the formulation of the modified frequentist
approach that will be discussed in Sect. 8.10, which is nowadays widely used in
High Energy Physics.

8.10 Modified Frequentist Approach: The CLs Method

The concerns about frequentist limits discussed at the end of Sect. 8.8.4 have been
addressed with the definition of a procedure that was adopted for the first time for
the combination of the results of the search for the Higgs boson [4] of the four LEP
experiments, Aleph, Delphi, Opal and L3.

The modification of the purely frequentist confidence level with the introduction
of a conservative corrective factor can cure, as will be presented in the following,
the aforementioned counterintuitive peculiarities of the frequentist limit procedure
in case of no observed signal events.

The so-called modified frequentist approach will be illustrated using the test
statistic adopted in the original proposal, which is the ratio of the likelihood
functions evaluated under two different hypotheses: the presence of signal plus
background (H1, corresponding to the likelihood function LsCb), and the presence
of background only (H0, corresponding to the likelihood function Lb):

�.E�/ D LsCb.ExI E�/
Lb.ExI E�/

: (8.32)

Different test statistics have been applied after the original definition of the LEP
procedure, but the method described in the following remains unchanged for all
different kinds of test statistics.
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If we consider, in addition to the pure counting of the number of events N, a set of
n variables Ex D .x1; � � � ; xn/ that characterize each event which are measured for N
events (Ex1; � � � ExN/, as it was already introduced in Sect. 7.7, the ratio of the extended
likelihood functions can be written as (Eq. 7.35):

�.�; E�/ D e��s.E�/
NY

iD1

 
�s.E�/fs.ExiI E�/
b.E�/fb.ExiI E�/

C 1

!

; (8.33)

where the functions fs and fb are the PDFs for signal and background of the variables
Ex. The negative logarithm of the test statistic is (Eq. 7.36):

� ln�.�; E�/ D �s.E�/�
NX

iD1
ln

 
�s.E�/fs.ExiI E�/
b.E�/fb.ExiI E�/

C 1

!

: (8.34)

In order to quote an upper limit using the frequentist approach, the distribution
of the test statistics � (or equivalently �2 ln�) in the hypothesis of signal plus
background (s C b) has to be known, and the p-value corresponding to the observed
value � D O� (denoted below as CLsCb) has to be determined.

The proposed modification to the purely frequentist approach consists of finding
two p-values corresponding to both the sCb and b hypotheses (below, for simplicity
of notation, the set of parameters E� also includes �):

CLsCb.E�/ D PsCb.�.E�/ � O�/ ; (8.35)

CLb.E�/ D Pb.�.E�/ � O�/ : (8.36)

From those two probabilities, the following quantity can be derived:

CLs.E�/ D CLsCb.E�/
CLb.E�/

: (8.37)

Upper limits are determined excluding the range of the parameters of interest (e.g.:
the signal strength � or a new particle’s mass) for which CLs.E�/ is lower than the
conventional exclusion confidence level, typically 95 % or 90 %. For this reason, the
modified frequentist approach is often referred to as the CLs method.

In most of the cases, the probabilities PsCb and Pb in Eqs. (8.35) and (8.36)
are not trivial to obtain analytically and are determined numerically using ran-
domly generated pseudoexperiments, or toy Monte Carlo. In this way, CLsCb and
CLb can be estimated as the fraction of generated pseudoexperiments for which
�.E�/ � O�, assuming the presence of both signal and background, or background
only, respectively. An example of the outcome of this numerical approach is shown
in Fig. 8.7.



156 8 Upper Limits

test statistics

60− 40− 20− 0 20 40
0

0.01

0.02

0.03

0.04

0.05

Modified frequentist approach
SB toy datasets

B toy datasets

test statistics on data

Fig. 8.7 Example of determination of CLs from pseudoexperiments. The distribution of the test
statistics �2 ln� is shown in blue assuming the signal-plus-background hypothesis and in red
assuming the background-only hypothesis. The black line shows the value of the test statistics
measured in data, and the hatched areas represent CLsCb (blue) and 1� CLb (red)

This method does not produce the desired (90 % or 95 %, usually) coverage from
the frequentist point of view, but does not suffer from the problematic features of
frequentist upper limits that were observed at the end of Sect. 6.4.

The CLs method has convenient statistical properties:

• It is conservative from the frequentist point of view. In fact, since CLb � 1, we
have that CLs.E�/ � CLsCb.E�/. So, it overcovers; this means that a CLs upper
limit is less stringent than a purely frequentist limit.

• Unlike the upper limits obtained using the Feldman–Cousins approach, if no
signal event is observed (n D 0), the CLs upper limit does not depend on the
expected amount of background.

For a simple Poissonian counting experiment with expected signal s and a back-
ground b, using the likelihood ratio from Eq. (7.39), it is possible to demonstrate
analytically that the CLs approach leads to a result identical to the Bayesian one
(Eq. 8.16) and to what was derived by Zech (see Sect. 8.9). In general, it turns out
that in many realistic applications, the CLs upper limits are numerically very similar
to Bayesian upper limits computed assuming a uniform prior. But of course the
Bayesian interpretation of upper limits cannot be applied to limits obtained using
the CLs approach.



8.11 Incorporating Nuisance Parameters and Systematic Uncertainties 157

On the other hand, the interpretation of limits obtained using the CLs method
is not obvious, and it does not match neither the frequentist nor the Bayesian
approaches. CLs limits have been defined as [8]:

approximation to the confidence in the signal hypothesis one might have obtained if the
experiment had been performed in the complete absence of background.

8.11 Incorporating Nuisance Parameters and Systematic
Uncertainties

Some of the parameters in the set considered so far, E� D .�1; � � � ; �m/, are not
of direct interest for our measurement, but are needed to model unknown char-
acteristics of our data sample. Those parameters are defined nuisance parameters
(Sect. 5.2). Nuisance parameters may appear, for instance, when the yield and/or the
distribution of the observed background is estimated with some uncertainty from
simulation or from control samples in data, or when the modeling of distributions
for signal and/or background events are not (perfectly) known, e.g.: to take into
account the effect of detector response (resolution, calibration, etc.).

If we are only interested in the measurement of the signal strength � only, all
other parameters �i can be considered as nuisance parameters. In case, for instance,
we are also interested in the measurement of the mass of a new particle, like the
Higgs boson’s mass, the parameter corresponding to the particle mass, say m D �1,
is, like �, a parameter of interest and all other remaining parameters �2; � � � ; �m can
be considered nuisance parameters.

More in general, let’s divide the parameter set in two subsets: the parameters of
interest, E� D .�1; � � � ; �h/, and the nuisance parameters, E� D .�1; � � � ; �l/.

8.11.1 Nuisance Parameters with the Bayesian Approach

The treatment of nuisance parameters is a well defined task under the Bayesian
approach and was already discussed in Sect. 3.4. The posterior joint probability
distribution for all the unknown parameters can be defined as follows (Eq. 3.32):

P.E�; E�jEx/ D L.ExI E�; E�/�.E�; E�/
R

L.ExI E� 0; E�0/�. E� 0; E�0/ dh� 0 dl�0 ; (8.38)

where L.ExI E�; E�/ is the as usual the likelihood function and �.E�; E�/ is the prior
distribution of the unknown parameters.
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The probability distribution of E� can be obtained as marginal PDF, integrating
the joint PDF over all nuisance parameters:

P.E� jEx/ D
Z

P.E�; E�jEx/ dl� D
R

L.ExI E�; E�/�.E�; E�/ dl�
R

L.ExI E� 0; E�0/�.E� 0; E�0/ dh� 0dl�0 : (8.39)

The problem is well defined, and the only difficulty is the numerical integration
in multiple dimensions. Several algorithms can be adopted for the evaluation
of Bayesian integrals. A particularly performant algorithm in those cases is the
Markov-chain Monte Carlo [9].

8.11.2 Hybrid Treatment of Nuisance Parameters

The treatment of nuisance parameters under the frequentist approach is more
difficult to perform rigorously. Cousins and Highlands [10] proposed to adopt the
same approach used for the Bayesian treatment to determine approximate likelihood
functions for the signal-plus-background and the background-only hypotheses. The
hybrid likelihood functions can be written, integrating Eqs. (7.31) and (7.34), as:

LsCb.Ex1; � � � ; Exkj�; E�/

D 1

nŠ

Z

e�
�
�s.E�;E�/Cb.E�;E�/

� nY

iD1

�
�s.E�; E�/fs.ExiI E�; E�/C b.E�; E�/fb.ExiI E�; E�/

�
dl� ;

(8.40)

Lb.Ex1; � � � ; Exkj E�/ D 1

nŠ

Z

e�b.E�;E�/b.E�; E�/n
nY

iD1
fb.ExiI E�; E�/ dl� : (8.41)

In order to include detector resolution effects, for instance to model the width of a
signal peak, the hybrid approach requires the convolution of the likelihood function
with the experimental resolution function.

The above likelihood functions can be used to compute CLs limits, as it was done
in the combined Higgs limit at LEP [4].

This hybrid Bayesian-frequentist approach does not ensure an exact frequentist
coverage, and it may tend to undercover in some cases [11]. It has been proven on
simple models to provide results that are numerically close to Bayesian evaluation
performed assuming a uniform prior [12].
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8.11.2.1 Event Counting Uncertainties

In the case of an event counting problem, if the number of background events
is known with some uncertainty, the PDF of the background estimate b0 can be
modeled as a function of the true unknown expected background b, P.b0I b/. The
likelihood functions, which depend on the parameter of interest s (we don’t use the
signal strength � here for simplicity) and the unknown nuisance parameter b, can
be written as:

LsCb.n; b
0I s; b/ D .s C b/n

nŠ
e�.sCb/P.b0I b/ ; (8.42)

Lb.n; b
0I b/ D bn

nŠ
e�bP.b0I b/ : (8.43)

In order to eliminate the dependence on the nuisance parameter b, the hybrid
likelihoods, using the Cousins–Highlands can be written as:

LsCb.n; b
0I s/ D

Z 1

0

.s C b/n

nŠ
e�.sCb/P.b0I b/ db ; (8.44)

Lb.n; b
0/ D

Z 1

0

bn

nŠ
e�bP.b0I b/ db : (8.45)

In the simplified case, for instance when P.b0I b/ is a Gaussian function, the
integration can be performed analytically [13]. In this case, when the standard
deviation of the distribution is not much smaller than b0, P.b0I b/ extends to negative
values of b, and the integration includes unphysical regions with negative signal
yields. For this reason, the above equations can be safely used only when the
probability to have negative values of b are negligible.

In order to avoid such cases, the use of distributions whose range is limited to
positive values is preferred. For instance, a log-normal distribution (see Sect. 2.7) is
usually preferred to a plain Gaussian.

8.12 Upper Limits Using the Profile Likelihood

A procedure that accounts for the treatment of nuisance parameters avoiding the
hybrid Bayesian approach adopts as test statistic the profile likelihood defined in
Eq. (7.27):

�.�/ D L.Exj�; OOE�.�//
L.Exj O�; OE�/

: (8.46)
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Above, in Eq. (8.46), O� and
OE� are the best fit values of � and E� corresponding to

the observed data sample, and
OOE�.�/ is the best fit value for E� obtained for a fixed

value of �. Above we assumed that all parameters are treated as nuisance parameter
and � is the only parameter of interest.

The profile likelihood is introduced in order to satisfy the conditions required to
apply Wilks’ theorem (see Sect. 7.6).

A scan of �2 ln�.�/ as a function of � reveals a minimum at the value
� D O�, where �2 ln�. O�/ D 0 by construction. As for the usual likelihood
function, the excursion of �2 ln�.�/ around the minimum and the intersection
of the corresponding curve with a straight line corresponding to �2 ln�.�/ D 1

allow to determine an uncertainty interval for � similarly to what was discussed in
Sect. 5.6. According to Wilks’ theorem (see Sect. 7.6) if � corresponds to the true
value, then the distribution of �2 ln�.�/ follow a �2 distribution with one degree
of freedom.

Usually the addition of nuisance parameters E� has the effect of broadening the
shape of the profile likelihood function as a function of the parameter of interest
� compared with cases where the nuisance parameters are kept fixed. This effect
increases the uncertainty on �when systematic uncertainties are included in the test
statistic.

Compared with the Cousins–Highland hybrid treatment of nuisance parameters,
the profile likelihood offers several advantages, including a CPU-faster numerical
implementation because it requires no numerical integration, which may be more
time-consuming than the minimizations required to compute the profile likelihood.

Given that the profile likelihood is based on a likelihood ratio, according to
the Neyman–Pearson lemma (see Sect. 7.3) it has optimal performances for what
concerns the test of the two hypotheses assumed in the numerator and in the
denominator of Eq. (8.46).

The test statistics t� D �2 ln�.�/ can be used to determine p-values p�
corresponding to the various hypotheses on �. Those p-values can be computed
in general by generating sufficiently large toy Monte Carlo samples.

8.13 Variations of Profile-Likelihood Test Statistics

Different variation in the definition of the profile likelihood have been proposed
and adopted for various data analysis cases. A review of most of the adopted test
statistics is presented in [1] where approximate formulae have been provided to
compute significances in asymptotic limits. Some examples are reported below.
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8.13.1 Test Statistic for Positive Signal Strength

In order to enforce the condition � � 0, since we can’t have negative yields from
new signals, the test statistic t� D �2 ln�.�/ can be modified as follows:

Qt� D �2 ln Q�.�/ D

8
ˆ̂
<

ˆ̂
:

�2 ln L.Exj�; OOE�.�//
L.Exj O�; OE�/

O� � 0 ;

�2 ln L.Exj�; OOE�.�//
L.Exj0; OE�.0//

O� < 0 :
(8.47)

In practice, one limits the best-fit value for � to values greater or equal to zero.

8.13.2 Test Statistics for Discovery

In order to asses the presence of a new signal, one wants to test the case of a positive
signal strength � against the case � D 0. This can be done using the test statistic t0
which is equal to t� D �2 ln�.�/ evaluated for� D 0. The test statistic t�, anyway,
may reject the hypothesis � D 0 also in case of a downward fluctuations in the data
that would yield a negative best-fit value �. A modification of t0 has been proposed
in order to be only sensitive to an excess in data that yields a significantly high value
of O� [1]:

q0 D

 �2 ln�.0/ O� � 0 ;

0 O� < 0 : (8.48)

The p-value p0 corresponding to the test statistic q0 can be evaluated using toy
Monte Carlo samples generated assuming background-only events. The distribution
of q0 will have a spike at q0 D 0 (a Dirac’s delta ı.q0/ component) corresponding
to all cases which give a negative O�.

8.13.3 Test Statistics for Upper Limits

Similarly to the definition of q0, in order to set an upper limit on � one doesn’t
want to exclude a given value of � if an upward fluctuation in data occurred, i.e.:
if O� > �. In order to avoid those cases, the following modification of t� has been
proposed:

q� D

 �2 ln�.�/ O� � � ;

0 O� > � : (8.49)

Here the distribution of q� will present a spike at q� D 0 corresponding to those
cases where O� > �.
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8.13.4 Higgs Test Statistic

A modified version of q� defined above has been adopted for Higgs search at LHC.
The modified test statistics is:

Qq� D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

�2 ln L.Exj�; OOE�.�//
L.Exj0;OE0/

O� < 0 ;

�2 ln L.Exj�; OOE�.�//
L.Exj O�; OE�/

0 � O� � � ;

0 O� > � :

(8.50)

Above, the constant introduced for O� < 0, as for q0, protects against unphysical
values of the signal strength, while the cases which have an upward fluctuations
of the data, such to give O� > �, are not considered as evidence against the
signal hypothesis with signal strength equal to a considered value of �, and the
test statistics is set to zero in those cases, in order not to spoilt the upper limit
performances of this test statistic.

8.13.5 Asymptotic Approximations

For the definition of the test statistics Qq�, as well for the most adopted variations
of the profile likelihood, asymptotic approximations which use Wilks’ theorem and
approximate formulae by Wald [14] have been computed and are treated extensively
in [1].

Using the test statistic for discovery q0, the asymptotic approximation gives the
following simplified expression for the significance:

Z0 ' p
q0 : (8.51)

The asymptotic approximation for the distribution of Qq� is:

f .Qq�j�/ D 1

2
ı.Qq�/C

8
<

:

1

2
p
2�

1pQq� e�Qq�=2 0 < Qq� � �2=�2 ;

1p
2�.2�=�/

exp
h
� 1
2

.Qq�C�2=�2/2
.2�=�/2

i
Qq� > �2=�2 ;

(8.52)

where ı.Qq�/ is a Dirac delta function, to model the cases in which the test statistics
is set to zero, and where �2 D �2=q�;A, in which q�;A is the value of the test
statistics �2 ln� evaluated on the so-called Asimov set [15]. The Asimov set is
a representative data set in which the yields of all data samples are set to their
expected values and nuisance parameter are set at their nominal value.

Asimov sets can also be used to compute approximate estimates of expected
experimental sensitivity, which would require the extraction of a large number of
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pseudoexperiments. The square roots of the test statistics evaluated at the Asimov
data sets corresponding to the assumed signal strength� can be used to approximate
the median significance, assuming a data sample distributing according to the
background-only hypothesis:

medŒZ�j0
 D pQq�;A : (8.53)

For a comprehensive treatment of asymptotic approximations, again, use [1].

Example 8.22 – A Realistic Example of Bump Hunting

The following example will present a classic “bump-hunting” case. In partic-
ular, we will try to estimate a signal’s significance using a variation of the
profile-likelihood technique. Eventually, in the following Example 8.23, the
systematic uncertainty on the expected background yield will be added.

A randomly generated sample has been used to mimic a realistic data
sample and it will be compared with two hypotheses:

1. background only, assuming an exponential model;
2. background plus signal, adding on top of the exponential background a

Gaussian signal.

The two cases are shown in Fig. 8.8, superimposed to the data histogram.
The likelihood function for the binned case can be built using a Poisson

distribution for the number of entries in each bin n1; � � � ; nnbins :

L.EnjEs; Eb; �; ˇ/ D
nbinsY

iD1
Pois.nijˇbi C �si/ : (8.54)

In Eq. (8.54) the distribution for the signal is modeled as Es D .si; � � � ; sbins/

and for the background as Eb D .bi; � � � ; bbins/. The normalization of Es and Eb are
given by theory expectations, and variations of the normalization scale can be
modeled by the extra parameter ˇ and �. � is the signal strength, and has been
introduced in several cases before. ˇ has the same role as � for the background
yield instead of the signal.

In order to measure the signal yield, the signal strength � should be
determined, which is the parameter of interest of the problem. ˇ, instead, can
be considered as a nuisance parameter. Let’s assume for the moment ˇ D 1,
i.e.: the uncertainty on the expected background yield from theory can be
considered negligible. We can use as test statistics:

q D �2 ln
L.EnjEs; Eb; �; ˇ D 1/

L.EnjEs; Eb; � D 0; ˇ D 1/
: (8.55)
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Fig. 8.8 A toy Monte Carlo data sample superimposed to an exponential background model (left)
and to an exponential background model plus a Gaussian signal (right)
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Note that this is somewhat different from the profile likelihood in Eq. (8.46),
and we used here the ratio of the likelihood functions LsCb=Lb.

This test statistic was used at Tevatron for several searches for new physics.
Note that compared with the ordinary profile likelihood (Eq. 8.46) this test
statistic can be written as:

q D �2 ln�.1/C 2 ln�.0/ : (8.56)

The distributions of the test statistic t for the background-only and for
the signal-plus-background hypotheses are shown in Fig. 8.9. The figure has
been produced generating 100,000 randomly-extracted toy samples in the two
hypotheses.

The p-value corresponding to the background-only hypothesis can be
evaluated as the fraction of randomly-extracted toy samples having a value
of the test statistic lower than the one observed in data.

From the distributions shown in Fig. 8.9, 375 out of 100,000 toy samples
have a value of q below the one in our data sample, hence the p-value is
3.7 %. Assuming a binomial uncertainty, the p-value can be determined with
an uncertainty of 0.2 %.

Using Eq. (8.1) to convert the p-value into a significance level, this corre-
sponds to a significance Z D 2:7.

An alternative way to determine the significance is to look at the scan of the
test statistics as a function of the parameter of interest �. This can be seen in
Fig. 8.10 which shows that the minimum value of q is reached for � D 1:24.

Considering the range of � where q exceeds the minimum value by not
more than 1, the asymmetric uncertainty interval for � can be determined as
O� D 1:24C0:49

�0:48 . Indeed, the interval exhibits a very small asymmetry.
The minimum value of q can be used to determine the significance in the

asymptotic approximation. If the null hypothesis (� D 0, assumed in the
denominator of Eq. (8.55)) is true, than the Wilks’ theorem holds, and we
have the approximated expression Z ' p�qmin D 2:7, in agreement with
the estimate obtained with the toy generation.

Note that in Fig. 8.10 the test statistic is zero for � D 0 and reaches a
negative minimum for� D O�, while the profile likelihood defined in Eq. (8.46)
has a minimum value of zero.
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Example 8.23 – Adding a Systematic Uncertainty

Let’s assume, continuing with the Example 8.22, that we know the background
normalization with a finite uncertainty. A 10 % uncertainty corresponds to an
estimate of the nuisance parameter ˇ D ˇ0 ˙ ıˇ D 1:0 ˙ 0:1. The extreme
cases where ˇ D 0:9 or ˇ D 1:1 are shown in Fig. 8.11.

The test statistic can be modified as follows:

q D �2 ln

sup
0:9�ˇ�1:1

L.EnjEs; Eb; �; ˇ/

sup
0:9�ˇ�1:1

L.EnjEs; Eb; � D 0; ˇ/
: (8.57)

The scan of the new test statistic is shown in Fig. 8.12. Compared with the
case where no uncertainty was included, the shape of the test-statistic scan is
now broader and the minimum is less deep. This results in a larger uncertainty:
� D 1:40C0:61

�0:60 and a smaller significance: Z D 2:3.
Note that this approaches considers implicitly a uniform distribution of the

estimate ˇ0 of the parameter ˇ, while a different PDF could be adopted. In that
case, the test statistic can be modified as follows:

q D �2 ln

sup
�1<ˇ<C1

L.EnjEs; Eb; �; ˇ; ˇ0/

sup
�1<ˇ<C1

L.EnjEs; Eb; � D 0; ˇ; ˇ0/
; (8.58)

where the likelihood function should now be written as:

L.EnjEs; Eb; �; ˇ; ˇ0/ D
nbinsY

iD1
Pois.nijˇbi C �si/P.ˇ

0jˇ/ ; (8.59)

and the term P.ˇ0jˇ/ is the PDF for the estimated background yield ˇ0, given
the true value ˇ. Typical options for P.ˇ0jˇ/ are a Gaussian distribution, with
the problem that it could also lead to negative values of ˇ0, or a lognormal
distribution (see Sect. 2.7), which constrains ˇ0 to be positive.
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Fig. 8.11 Toy data sample superimposed to an exponential background model (top) and to an
exponential background model plus a Gaussian signal (bottom) adding a 10 % uncertainty to the
background normalization
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Fig. 8.12 Scan of the test statistic q as a function of the parameter of interest � including
systematic uncertainty on ˇ (dark brown) compared with the case with no uncertainty (red)

8.14 The Look-Elsewhere Effect

In several cases experiments look for a peak in the distribution of an observable
variable, typically a reconstructed mass of a particle, but the location of the peak
is not known a priori. This was the case, for instance, for the search for the Higgs
boson at LHC, or any search for new resonances. This is not the case, instead, for
the search for a rare decay of a known particle (imagine Bs ! �C�� at LHC).

If an excess in data compared with the background expectation is found at any
mass value, the excess could be interpreted as a possible signal of a new resonance
at the observed mass. Anyway, the peak could be produced either by the presence
of a real signal or by a background fluctuation.

The computation of the signal significance can be done using the p-value of the
measured test statistics q assuming a fixed value m0 of the resonance mass. This is
called local significance, and can be written as:

p.m0/ D
Z 1

qobs.m0/

f .q.m0/j� D 0/ dq ; (8.60)

where f .qj�/ is the PDF of the adopted test statistics q for a given value of the signal
strength �.

The local significance gives the probability corresponding to a background
fluctuation at a fixed value of the mass m0. The probability to have a background
overfluctuation at any mass value, called global p-value, is larger than the local p-
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value, which would be an underestimate if taken as the probability of a background
fluctuation at any mass value in the range of interest.

The magnitude of the effect is larger as the mass resolution gets worse. In fact,
assuming a small intrinsic width of the new resonance, a very good mass resolution
implies that a peak can appear from a background fluctuation only if values of the
reconstructed mass for different background events are by chance all close each
other within the experimental resolution, which is less likely as the resolution is
smaller.

More in general, when an experiment is looking for a signal where one or more
parameters E� are unknown (e.g.: could be both the mass and the width or other
properties of a new signal), in the presence of an excess in data with respect to the
background expectation, the unknown parameter (or parameters) can be determined
from the data sample itself. In those cases, the local significance, expressed in
terms of a p-value computed at fixed values of the unknown parameter set E�0, is
an underestimate of the global significance.

The global p-value can be computed using as test statistics the largest value of
the estimator over the entire parameter range:

q.
OE�/ D max

�min
i <�i<�

max
i ;

iD1;��� ;m
q.E�/ : (8.61)

The distribution of q.
OE�/ from Eq. (8.61) is not easy to determine, and usually

CPU-intensive random extraction of pseudo experiments are needed. Note that in
this case the Wilks’ theorem cannot be applied because the values of the parameters
E� determined from data is not defined for the case where � D 0, hence the
hypotheses assumed at the numerator and the denominator are not “nested”.

In order to determine a significance close to the discovery level of 5� , p-values
smaller than the 3 � 10�7 need to be evaluated, hence tens of millions of pseudo
experiment representing the background-only case need to be generated.

8.14.1 Trial Factors

An approximate way to determine the global significance taking into account the
look-elsewhere effect is reported in [16], relying on the asymptotic behavior of
likelihood-ratio estimators. It is possible to demonstrate [17] that the probability
that the test statistic q. Om/ is larger than a given value u, i.e.: the value of the global
p-value, is bound by:

pglob D P.q. Om/ > u/ � hNui C P.�2 > u/ ; (8.62)
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where P.�2 > u/ comes from an asymptotic approximation of the distribution of the
local test statistics q.m/ as a �2 distribution with one degree of freedom. The term
hNui in Eq. (8.62), instead, is the average number of upcrossings, i.e. the average
number of times the curve q D q.m/ crosses an horizontal line at a given level
q D u with a positive derivative, which can be evaluated using toy Monte Carlo.
This is visualized in an example in Fig. 8.13.

The value of hNui could be very small, depending on the level u. Fortunately, a
scaling law exists, so, starting from a different level u0 one can extrapolate hNu0i as:

hNui D hNu0i e�.u�u0/=2 : (8.63)

This allows to evaluate hNu0i generating a number of pseudo experiment much
smaller than what would be needed to determine hNui with comparable precision.

In the case of more than one parameter the number of upcrossing is replaced by
the Euler characteristic given by the number of disconnected components minus the
number of “holes” in the multidimensional sets of the parameter space defined by
q.m/ > u [18].
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